ﻻ يوجد ملخص باللغة العربية
Pauli blocking is carefully investigated for the processes of $NN rightarrow N Delta$ and $Delta rightarrow N pi$ in heavy-ion collisions, aiming at a more precise prediction of the $pi^-/ pi^+$ ratio which is an important observable to constrain the high-density symmetry energy. We use the AMD+JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the JAM model to treat processes for $Delta$ resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blocking is treated in the standard method of JAM. We propose an improved method in AMD+JAM to use the Wigner function precisely calculated in AMD as the blocking probability. Different Pauli blocking methods are compared in heavy-ion collisions of neutron-rich nuclei, ${}^{132}mathrm{Sn}+{}^{124}mathrm{Sn}$, at 270 MeV/nucleon. With the more accurate method, we find that Pauli blocking is stronger, in particular for the neutron in the final state in $NN rightarrow N Delta$ and $ Delta to Npi$, compared to the case with a proton in the final state. Consequently, the $pi^-/pi^+$ ratio becomes higher when the Pauli blocking is improved, the effect of which is found to be comparable to the sensitivity to the high-density symmetry energy.
The production mechanism of highly excited nuclei in the Fermi energy domain is investigated. A phenomenological approach, based on the exciton model, is used for the description of pre-equilibrium emission. A model of deep inelastic transfer is empl
Three typical algorithms of Pauli blocking in the quantum molecular dynamics type models are investigated in the nuclear matter, the nucleus and the heavy ion collisions. The calculations in nuclear matter show that the blocking ratios obtained with
We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effec
A new paradigm for nuclear structure that includes blocking effects of tensor interactions is proposed. All of the recently discovered magic numbers (N=6, 14, 16, 32 and 34) in neutron-rich nuclei can be explained by the blocking effects. A large amo
We investigate the influence of deformation on the possible occurrence of long-lived $K$ isomers in Hf isotopes around N=116, using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the mult