ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of excited state decay and dephasing on phonon quantum state preparation

110   0   0.0 ( 0 )
 نشر من قبل Daniel Wigger
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling between single-photon emitters and phonons opens many possibilities to store and transmit quantum properties. In this paper we apply the independent boson model to describe the coupling between an optically driven two-level system and a discrete phonon mode. Tailored optical driving allows not only to generate coherent phonon states, but also to generate coherent superpositions in the form of Schrodinger cat states in the phonon system. We analyze the influence of decay and dephasing of the two-level system on these phonon preparation protocols. We find that the decay transforms the coherent phonon state into a circular distribution in phase space. Although the dephasing between two exciting laser pulses leads to a reduction of the interference ability in the phonon system, the decay conserves it during the transition into the ground state. This allows to store the phonon quantum state properties in the ground state of the single-photon emitter.



قيم البحث

اقرأ أيضاً

Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical curren t and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.
Coherent spin states in semiconductor quantum dots offer promise as electrically controllable quantum bits (qubits) with scalable fabrication. For few-electron quantum dots made from gallium arsenide (GaAs), fluctuating nuclear spins in the host latt ice are the dominant source of spin decoherence. We report a method of preparing the nuclear spin environment that suppresses the relevant component of nuclear spin fluctuations below its equilibrium value by a factor of ~ 70, extending the inhomogeneous dephasing time for the two-electron spin state beyond 1 microsecond. The nuclear state can be readily prepared by electrical gate manipulation and persists for > 10 seconds.
337 - Yanwen Wu , I.M. Piper , M. Ediger 2010
Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical reado ut, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.
We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, w here a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.
The energy states in semiconductor quantum dots are discrete as in atoms, and quantum states can be coherently controlled with resonant laser pulses. Long coherence times allow the observation of Rabi-flopping of a single dipole transition in a solid state device, for which occupancy of the upper state depends sensitively on the dipole moment and the excitation laser power. We report on the robust preparation of a quantum state using an optical technique that exploits rapid adiabatic passage from the ground to an excited state through excitation with laser pulses whose frequency is swept through the resonance. This observation in photoluminescence experiments is made possible by introducing a novel optical detection scheme for the resonant electron hole pair (exciton) generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا