ترغب بنشر مسار تعليمي؟ اضغط هنا

Blocking-state influence on shot noise and conductance in quantum dots

73   0   0.0 ( 0 )
 نشر من قبل Mihai-Cezar Harabula
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.

قيم البحث

اقرأ أيضاً

65 - I. Weymann 2008
The spin-polarized transport through a coherent strongly coupled double quantum dot (DQD) system is analyzed theoretically in the sequential and cotunneling regimes. Using the real-time diagrammatic technique, we analyze the current, differential con ductance, shot noise and tunnel magnetoresistance (TMR) as a function of both the bias and gate voltages for double quantum dots coupled in series, in parallel as well as for T-shaped systems. For DQDs coupled in series, we find a strong dependence of the TMR on the number of electrons occupying the double dot, and super-Poissonian shot noise in the Coulomb blockade regime. In addition, for asymmetric DQDs, we analyze transport in the Pauli spin blockade regime and explain the existence of the leakage current in terms of cotunneling and spin-flip cotunneling-assisted sequential tunneling. For DQDs coupled in parallel, we show that the transport characteristics in the weak coupling regime are qualitatively similar to those of DQDs coupled in series. On the other hand, in the case of T-shaped quantum dots we predict a large super-Poissonian shot noise and TMR enhanced above the Julliere value due to increased occupation of the decoupled quantum dot. We also discuss the possibility of determining the geometry of the double dot from transport characteristics. Furthermore, where possible, we compare our results with existing experimental data on nonmagnetic systems and find qualitative agreement.
The coupling between single-photon emitters and phonons opens many possibilities to store and transmit quantum properties. In this paper we apply the independent boson model to describe the coupling between an optically driven two-level system and a discrete phonon mode. Tailored optical driving allows not only to generate coherent phonon states, but also to generate coherent superpositions in the form of Schrodinger cat states in the phonon system. We analyze the influence of decay and dephasing of the two-level system on these phonon preparation protocols. We find that the decay transforms the coherent phonon state into a circular distribution in phase space. Although the dephasing between two exciting laser pulses leads to a reduction of the interference ability in the phonon system, the decay conserves it during the transition into the ground state. This allows to store the phonon quantum state properties in the ground state of the single-photon emitter.
126 - I. Weymann , J. Barnas 2007
Spin-dependent transport through a multilevel quantum dot weakly coupled to ferromagnetic leads is analyzed theoretically by means of the real-time diagrammatic technique. Both the sequential and cotunneling processes are taken into account, which ma kes the results on tunnel magnetoresistance (TMR) and shot noise applicable in the whole range of relevant bias and gate voltages. Suppression of the TMR due to inelastic cotunneling and super-Poissonian shot noise have been found in some of the Coulomb blockade regions. Furthermore, in the Coulomb blockade regime there is an additional contribution to the noise due to bunching of cotunneling processes involving the spin-majority electrons. On the other hand, in the sequential tunneling regime TMR oscillates with the bias voltage, while the current noise is generally sub-Poissonian.
The conductance quantization and shot noise below the first conductance plateau $G_0 = 2e^2/h$ are measured in a quantum point contact fabricated in a GaAs/AlGaAs tunnel-coupled double quantum well. From the conductance measurement, we observe a clea r quantized conductance plateau at $0.5G_0$ and a small minimum in the transconductance at $0.7 G_0$. Spectroscopic transconductance measurement reveals three maxima inside the first diamond, thus suggesting three minima in the dispersion relation for electric subbands. Shot noise measurement shows that the Fano factor behavior is consistent with this observation. We propose a model that relates these features to a wavenumber directional split subband due to a strong Rashba spin--orbit interaction that is induced by the center barrier potential gradient of the double-layer sample.
The valley degree of freedom presents challenges and opportunities for silicon spin qubits. An important consideration for singlet-triplet states is the presence of two distinct triplets, comprised of valley vs. orbital excitations. Here we show that both of these triplets are present in the typical operating regime, but that only the valley-excited triplet offers intrinsic protection against charge noise. We further show that this protection arises naturally in dots with stronger confinement. These results reveal an inherent advantage for silicon-based multi-electron qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا