ﻻ يوجد ملخص باللغة العربية
Caching of popular content closer to the mobile user can significantly increase overall user experience as well as network efficiency by decongesting backbone network segments in the case of congestion episodes. In order to find the optimal caching locations, many conventional approaches rely on solving a complex optimization problem that suffers from the curse of dimensionality, which may fail to support online decision making. In this paper we propose a framework to amalgamate model based optimization with data driven techniques by transforming an optimization problem to a grayscale image and train a convolutional neural network (CNN) to predict optimal caching location policies. The rationale for the proposed modelling comes from CNNs superiority to capture features in grayscale images reaching human level performance in image recognition problems. The CNN is trained with optimal solutions and numerical investigations reveal that the performance can increase by more than 400% compared to powerful randomized greedy algorithms. To this end, the proposed technique seems as a promising way forward to the holy grail aspect in resource orchestration which is providing high quality decision making in real time.
With the continuous trend of data explosion, delivering packets from data servers to end users causes increased stress on both the fronthaul and backhaul traffic of mobile networks. To mitigate this problem, caching popular content closer to the end-
While the depth of convolutional neural networks has attracted substantial attention in the deep learning research, the width of these networks has recently received greater interest. The width of networks, defined as the size of the receptive fields
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con
We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the A
We explore the application of a Convolutional Neural Network (CNN) to image the shear modulus field of an almost incompressible, isotropic, linear elastic medium in plane strain using displacement or strain field data. This problem is important in me