ترغب بنشر مسار تعليمي؟ اضغط هنا

SOFIA/HAWC+ traces the magnetic fields in NGC 1068

120   0   0.0 ( 0 )
 نشر من قبل Enrique Lopez-Rodriguez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of galactic spiral structure by means of thermal emission from magnetically aligned dust grains. Our 89 $mu$m polarimetric imaging of NGC 1068 with the High-resolution Airborne Wideband Camera/Polarimeter (HAWC+) on NASAs Stratospheric Observatory for Infrared Astronomy (SOFIA) also sheds light on magnetic field structure in the vicinity of the galaxys inner-bar and active galactic nucleus (AGN). We find correlations between the 89 $mu$m magnetic field vectors and other tracers of spiral arms, and a symmetric polarization pattern as a function of the azimuthal angle arising from the projection and inclination of the disk field component in the plane of the sky. The observations can be fit with a logarithmic spiral model with pitch angle of $16.9^{+2.7}_{-2.8}$$^{circ}$ and a disk inclination of $48pm2^{circ}$. We infer that the bulk of the interstellar medium from which the polarized dust emission originates is threaded by a magnetic field that closely follows the spiral arms. Inside the central starburst disk ($<1.6$ kpc), the degree of polarization is found to be lower than for far-infrared sources in the Milky Way, and has minima at the locations of most intense star formation near the outer ends of the inner-bar. Inside the starburst ring, the field direction deviates from the model, becoming more radial along the leading edges of the inner-bar. The polarized flux and dust temperature peak $sim 3-6$ NE of the AGN at the location of a bow shock between the AGN outflow and the surrounding interstellar medium, but the AGN itself is weakly polarized ($< 1$%) at both 53 and 89 um.

قيم البحث

اقرأ أيضاً

We report the highest spatial resolution measurement of magnetic fields in M17 using thermal dust polarization taken by SOFIA/HAWC+ centered at 154 $mu$m wavelength. Using the Davis-Chandrasekhar-Fermi method, we found the presence of strong magnetic fields of $980 pm 230;mu$G and $1665 pm 885;mu$G in lower-density (M17-N) and higher-density (M17-S) regions, respectively. The magnetic field morphology in M17-N possibly mimics the fields in gravitational collapse molecular cores while in M17-S the fields run perpendicular to the matter structure and display a pillar and an asymmetric hourglass shape. The mean values of the magnetic field strength are used to determine the Alfvenic Mach numbers ($mathcal{M_A}$) of M17-N and M17-S which turn out to be sub-Alfvenic, or magnetic fields dominate turbulence. We calculate the mass-to-flux ratio, $lambda$, and obtain $lambda=0.07$ for M17-N and $0.28$ for M17-S. The sub-critical values of $lambda$ are in agreement with the lack of massive stars formed in M17. To study dust physics, we analyze the relationship between the dust polarization fraction, $p$, and the thermal emission intensity, $I$, gas column density, $N({rm H_2})$, and dust temperature, $T_{rm d}$. The polarization fraction decreases with intensity as $I^{-alpha}$ with $alpha = 0.51$. The polarization fraction also decreases with increasing $N(rm H_{2})$, which can be explained by the decrease of grain alignment by radiative torques (RATs) toward denser regions with a weaker radiation field and/or tangling of magnetic fields. The polarization fraction tends to increase with $T_{rm d}$ first and then decreases when $T_ {rm d} > 50$ K. The latter feature seen in the M17-N, where the gas density changes slowly with $T_{d}$, is consistent with the RAT disruption effect.
SOFIA HAWC+ polarimetry at $154~micron$ is reported for the face-on galaxy M51 and the edge-on galaxy NGC 891. For M51, the polarization vectors generally follow the spiral pattern defined by the molecular gas distribution, the far-infrared (FIR) int ensity contours, and other tracers of star formation. The fractional polarization is much lower in the FIR-bright central regions than in the outer regions, and we rule out loss of grain alignment and variations in magnetic field strength as causes. When compared with existing synchrotron observations, which sample different regions with different weighting, we find the net position angles are strongly correlated, the fractional polarizations are moderately correlated, but the polarized intensities are uncorrelated. We argue that the low fractional polarization in the central regions must be due to significant numbers of highly turbulent segments across the beam and along lines of sight in the beam in the central 3 kpc of M51. For NGC 891, the FIR polarization vectors within an intensity contour of 1500 $rm{MJy~sr^{-1}}$ are oriented very close to the plane of the galaxy. The FIR polarimetry is probably sampling the magnetic field geometry in NGC 891 much deeper into the disk than is possible with NIR polarimetry and radio synchrotron measurements. In some locations in NGC 891 the FIR polarization is very low, suggesting we are preferentially viewing the magnetic field mostly along the line of sight, down the length of embedded spiral arms. There is tentative evidence for a vertical field in the polarized emission off the plane of the disk.
We report on polarimetric maps made with HAWC+/SOFIA toward Rho Oph A, the densest portion of the Rho Ophiuchi molecular complex. We employed HAWC+ bands C (89 $mu$m) and D (154 $mu$m). The slope of the polarization spectrum was investigated by defin ing the quantity R_DC = p_D/p_C, where p_C and p_D represent polarization degrees in bands C and D, respectively. We find a clear correlation between R_DC and the molecular hydrogen column density across the cloud. A positive slope (R_DC > 1) dominates the lower density and well illuminated portions of the cloud, that are heated by the high mass star Oph S1, whereas a transition to a negative slope (R_DC < 1) is observed toward the denser and less evenly illuminated cloud core. We interpret the trends as due to a combination of: (1) Warm grains at the cloud outskirts, which are efficiently aligned by the abundant exposure to radiation from Oph S1, as proposed in the radiative torques theory; and (2) Cold grains deep in the cloud core, which are poorly aligned due to shielding from external radiation. To assess this interpretation, we developed a very simple toy model using a spherically symmetric cloud core based on Herschel data, and verified that the predicted variation of R_DC is consistent with the observations. This result introduces a new method that can be used to probe the grain alignment efficiency in molecular clouds, based on the analysis of trends in the far-infrared polarization spectrum.
NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chem ical evolution of the PAH molecules which, in turn, depends on the local physical conditions. We use the capabilities of SOFIA to observe a 3.2 x 3.4 region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7) at 3.3 and 11.2 um. We compare the SOFIA images with existing images of the PAH emission at 8.0 um (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the ERE (HST and CFHT), and H_2 (2.12 um). We create maps of the 11.2/3.3 um ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 um ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAHdb to translate the 11.2/3.3 um ratio to PAH sizes. The 11.2/3.3 um map shows the smallest PAH concentrate on the PDR surface (H_2 and extended red emission) in the NW and South PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (N_c) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. The PAH size map enables us to follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR cavity, the PAH abundance drops as the smallest PAH are broken down. The average PAH size increases in the cavity where only the largest species survive or are converted into C_60 by photochemical processing.
We present a study of the relative orientation between the magnetic field and elongated cloud structures for the $rho$ Oph A and $rho$ Oph E regions in L1688 in the Ophiuchus molecular cloud. Combining inferred magnetic field orientation from HAWC+ 1 54 $mu$m observations of polarized thermal emission with column density maps created using Herschel submillimeter observations, we find consistent perpendicular relative alignment at scales of $0.02$ pc ($33.6$ at $d approx 137$ pc) using the histogram of relative orientations (HRO) technique. This supports the conclusions of previous work using Planck polarimetry and extends the results to higher column densities. Combining this HAWC+ HRO analysis with a new Planck HRO analysis of L1688, the transition from parallel to perpendicular alignment in L1688 is observed to occur at a molecular hydrogen column density of approximately $10^{21.7}$ cm$^{-2}$. This value for the alignment transition column density agrees well with values found for nearby clouds via previous studies using only Planck observations. Using existing turbulent, magnetohydrodynamic simulations of molecular clouds formed by colliding flows as a model for L1688, we conclude that the molecular hydrogen volume density associated with this transition is approximately $sim10^{4}$ cm$^{-3}$. We discuss the limitations of our analysis, including incomplete sampling of the dense regions in L1688 by HAWC+.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا