ترغب بنشر مسار تعليمي؟ اضغط هنا

The far-infrared polarization spectrum of Rho Ophiuchi A from HAWC+/SOFIA observations

110   0   0.0 ( 0 )
 نشر من قبل F\\'abio Pereira Santos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on polarimetric maps made with HAWC+/SOFIA toward Rho Oph A, the densest portion of the Rho Ophiuchi molecular complex. We employed HAWC+ bands C (89 $mu$m) and D (154 $mu$m). The slope of the polarization spectrum was investigated by defining the quantity R_DC = p_D/p_C, where p_C and p_D represent polarization degrees in bands C and D, respectively. We find a clear correlation between R_DC and the molecular hydrogen column density across the cloud. A positive slope (R_DC > 1) dominates the lower density and well illuminated portions of the cloud, that are heated by the high mass star Oph S1, whereas a transition to a negative slope (R_DC < 1) is observed toward the denser and less evenly illuminated cloud core. We interpret the trends as due to a combination of: (1) Warm grains at the cloud outskirts, which are efficiently aligned by the abundant exposure to radiation from Oph S1, as proposed in the radiative torques theory; and (2) Cold grains deep in the cloud core, which are poorly aligned due to shielding from external radiation. To assess this interpretation, we developed a very simple toy model using a spherically symmetric cloud core based on Herschel data, and verified that the predicted variation of R_DC is consistent with the observations. This result introduces a new method that can be used to probe the grain alignment efficiency in molecular clouds, based on the analysis of trends in the far-infrared polarization spectrum.



قيم البحث

اقرأ أيضاً

We analyze the wavelength dependence of the far-infrared polarization fraction toward the OMC-1 star forming region using observations from HAWC+/SOFIA at 53, 89, 154, and 214 $mu$m. We find that the shape of the far-infrared polarization spectrum is variable across the cloud and that there is evidence of a correlation between the slope of the polarization spectrum and the average line-of-sight temperature. The slope of the polarization spectrum tends to be negative (falling toward longer wavelengths) in cooler regions and positive or flat in warmer regions. This is very similar to what was discovered in $rho$ Oph A via SOFIA polarimetry at 89 and 154 $mu$m. Like the authors of this earlier work, we argue that the most natural explanation for our falling spectra is line-of-sight superposition of differing grain populations, with polarized emission from the warmer regions and less-polarized emission from the cooler ones. In contrast with the earlier work on $rho$ Oph A, we do not find a clear correlation of polarization spectrum slope with column density. This suggests that falling spectra are attributable to variations in grain alignment efficiency in a heterogeneous cloud consistent with radiative torques theory. Alternative explanations in which variations in grain alignment efficiency are caused by varying gas density rather than by varying radiation intensity are disfavored.
SOFIA HAWC+ polarimetry at $154~micron$ is reported for the face-on galaxy M51 and the edge-on galaxy NGC 891. For M51, the polarization vectors generally follow the spiral pattern defined by the molecular gas distribution, the far-infrared (FIR) int ensity contours, and other tracers of star formation. The fractional polarization is much lower in the FIR-bright central regions than in the outer regions, and we rule out loss of grain alignment and variations in magnetic field strength as causes. When compared with existing synchrotron observations, which sample different regions with different weighting, we find the net position angles are strongly correlated, the fractional polarizations are moderately correlated, but the polarized intensities are uncorrelated. We argue that the low fractional polarization in the central regions must be due to significant numbers of highly turbulent segments across the beam and along lines of sight in the beam in the central 3 kpc of M51. For NGC 891, the FIR polarization vectors within an intensity contour of 1500 $rm{MJy~sr^{-1}}$ are oriented very close to the plane of the galaxy. The FIR polarimetry is probably sampling the magnetic field geometry in NGC 891 much deeper into the disk than is possible with NIR polarimetry and radio synchrotron measurements. In some locations in NGC 891 the FIR polarization is very low, suggesting we are preferentially viewing the magnetic field mostly along the line of sight, down the length of embedded spiral arms. There is tentative evidence for a vertical field in the polarized emission off the plane of the disk.
Located in the Large Magellanic cloud and mostly irradiated by a massive-star cluster R$,$136, 30 Doradus is an ideal target to test the leading theory of the grain alignment and rotational disruption by RAdiative Torques (RATs). Here, we use publicl y available polarized thermal dust emission observations of 30 Doradus at 89, 154, and 214$,mu$m using SOFIA/HAWC+. We analyse the variation of the dust polarization degree ($p$) with the total emission intensity ($I$), the dust temperature ($T_{rm d}$), and the gas column density ($N_{rm H}$) constructed from ${it Herschel}$ data. The 30 Doradus complex is divided into two main regions relative to R$,$136, namely North and South. In the North, we find that the polarization degree first decreases and then increases before decreasing again when the dust temperature increases toward the irradiating cluster R$,$136. The first depolarization likely arises from the decrease of grain alignment efficiency toward the dense medium due to the attenuation of the interstellar radiation field and the increase of the gas density. The second trend (the increase of $p$ with $T_{rm d}$) is consistent with the RAT alignment theory. The final trend (the decrease of $p$ with $T_{rm d}$) is consistent with the RAT alignment theory only when the grain rotational disruption by RATs is taken into account. In the South, we find that the polarization degree is nearly independent of the dust temperature, while the grain alignment efficiency is higher around the peak of the gas column density and decreases toward the radiation source. The latter feature is also consistent with the prediction of the rotational disruption by RATs.
The hydroxyl radical (OH) is found in various environments within the interstellar medium (ISM) of the Milky Way and external galaxies, mostly either in diffuse interstellar clouds or in the warm, dense environments of newly formed low-mass and high- mass stars, i.e, in the dense shells of compact and ultracompact HII regions (UCHIIRs). Until today, most studies of interstellar OH involved the molecules radio wavelength hyperfine structure (hfs) transitions. These lines are generally not in LTE and either masing or over-cooling complicates their interpretation. In the past, observations of transitions between different rotational levels of OH, which are at far-infrared wavelengths, have suffered from limited spectral and angular resolution. Since these lines have critical densities many orders of magnitude higher than the radio wavelength ground state hfs lines and are emitted from levels with more than 100 K above the ground state, when observed in emission, they probe very dense and warm material. We probe the warm and dense molecular material surrounding the UCHIIR/OH maser sources W3(OH), G10.62-0.39 and NGC 7538 IRS1 by studying the $^2Pi_{{1/2}}, J = {3/2} - {1/2}$ rotational transition of OH in emission and, toward the last source also the molecules $^2Pi_{3/2}, J = 5/2 - 3/2$ ground-state transition in absorption. We used the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe these OH lines, which are near 1.84 THz ($163 mu$m) and 2.51 THz ($119.3 mu$m). We clearly detect the OH lines, some of which are blended with each other. Employing non-LTE radiative transfer calculations we predict line intensities using models of a low OH abundance envelope versus a compact, high-abundance source corresponding to the origin of the radio OH lines.
Dense, fast-moving ejecta knots in supernova remnants are prime sites for molecule and dust formation. We present SOFIA far-IR spectrometer FIFI-LS observations of CO-rich knots in Cas A which cover a ~1 square arc minute area of the northern shell, in the [O III] 52 and 88 micron and [O I] 63 micron lines. The FIFI-LS spectra reveal that the line profiles of [O III] and [O I] are similar to those of the Herschel PACS [O III] and CO lines. We find that the [O III] maps show very different morphology than the [O I] map. The [O III] maps reveal diffuse, large-scale structures and the ratio of the two [O III] lines imply the presence of gas with a range of density 500 - 10,000 per cm^3 within the mapped region. In contrast, the [O I] map shows bright emission associated with the dense CO-rich knots. The 63 micron [O I] line traces cooled, dense post-shocked gas of ejecta. We find that IR-dominated [O III] emission is from post-shocked gas based on its morphology, high column density, and velocity profile. We describe multi-phase ejecta knots, a lifetime of clumps, and survival of dust in the young supernova remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا