ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial mass-final luminosity relation of type II supernova progenitors. Hints of new physics?

62   0   0.0 ( 0 )
 نشر من قبل Oscar Straniero
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revise the theoretical initial mass-final luminosity relation for progenitors of type IIP and IIL supernovae. The effects of the major uncertainties, as those due to the treatment of convection, semiconvection, rotation, mass loss, nuclear reaction rates and neutrinos production rates are discussed in some details. The effects of mass transfer between components of close-binary systems are also considered. By comparing the theoretical predictions to a sample of type II supernovae for which the initial mass of the progenitors and the pre-explosive luminosity are available, we conclude that stellar rotation may explain a few progenitors which appear brighter than expected in case of non-rotating models. In the most extreme case, SN2012ec, an initial rotational velocity up to 300 km s$^{-1}$ is required. Alternatively, these objects could be mass-loosing components of close binaries. However, most of the observed progenitors appear fainter than expected. This occurrence seems to indicate that the Compton and pair neutrino energy-loss rates, as predicted by the standard electro-weak theory, are not efficient enough and that an additional negative contribution to the stellar energy balance is required. We show that axions coupled with parameters accessible to currently planned experiments, such as IAXO and, possibly, Baby-IAXO and ALPS II, may account for the missing contribution to the stellar energy-loss.

قيم البحث

اقرأ أيضاً

We present the preliminary results of a survey of the open clusters NGC3532 and NGC2287 for new white dwarf members which can help improve understanding of the form of the upper end of the stellar initial mass-final mass relation. We identify four ob jects with cooling times, distances and proper motions consistent with membership of these clusters. We find that despite a range in age of ~100Myr the masses of the four heaviest white dwarfs in NGC3532 span the narrow mass interval M~0.9-1.0Msolar suggesting that the initial mass-final mass relation is relatively flatter over 4.5Msolar <~ M_init <~ 6.5Msolar than at immediately lower masses. Additionally, we have unearthed WD J0646-203 which is possibly the most massive cluster white dwarf identified to date. With M~1.1Msolar it seems likely to be composed of ONe and has a cooling time consistent with it having evolved from a single star.
127 - Ben Davies , Emma R. Beasor 2020
By comparing the properties of Red Supergiant (RSG) supernova progenitors to those of field RSGs, it has been claimed that there is an absence of progenitors with luminosities $L$ above $log(L/L_odot) > 5.2$. This is in tension with the empirical upp er luminosity limit of RSGs at $log(L/L_odot) = 5.5$, a result known as the `Red Supergiant Problem. This has been interpreted as evidence for an upper mass threshold for the formation of black-holes. In this paper, we compare the observed luminosities of RSG SN progenitors with the observed RSG $L$-distribution in the Magellanic Clouds. Our results indicate that the absence of bright SN II-P/L progenitors in the current sample can be explained at least in part by the steepness of the $L$-distribution and a small sample size, and that the statistical significance of the Red Supergiant Problem is between 1-2$sigma$ . Secondly, we model the luminosity distribution of II-P/L progenitors as a simple power-law with an upper and lower cutoff, and find an upper luminosity limit of $log(L_{rm hi}/L_odot) = 5.20^{+0.17}_{-0.11}$ (68% confidence), though this increases to $sim$5.3 if one fixes the power-law slope to be that expected from theoretical arguments. Again, the results point to the significance of the RSG Problem being within $sim 2 sigma$. Under the assumption that all progenitors are the result of single-star evolution, this corresponds to an upper mass limit for the parent distribution of $M_{rm hi} = 19.2{rm M_odot}$, $pm1.3 {rm M_odot (systematic)}$, $^{+4.5}_{-2.3} {rm M_odot}$ (random) (68% confidence limits).
103 - Ben Davies , Emma Beasor 2017
There are a growing number of nearby SNe for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitors brightness a few years before explosion, and ultimately estimate its ini tial mass. Previous work has shown that II-P and II-L supernovae (SNe) have Red Supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to $<$17M$_odot$. This is in contrast with the cutoff of 25-30M$_odot$ predicted by evolutionary models, a result which is termed the Red Supergiant Problem. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, that of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a stars luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cutoff of $M_{rm hi}$=$19.0^{+2.5}_{-1.3}$M$_odot$, with a 95% upper confidence limit of $<$27M$_odot$. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cutoff to $M_{rm hi}$=25M$_odot$ ($<$33M$_odot$, 95% confidence). We therefore conclude that there is currently no strong evidence for `missing high mass progenitors to core-collapse SNe.
79 - P.D. Dobbie 2006
We report the spectroscopic confirmation of four further white dwarf members of Praesepe. This brings the total number of confirmed white dwarf members to eleven making this the second largest collection of these objects in an open cluster identified to date. This number is consistent with the high mass end of the initial mass function of Praesepe being Salpeter in form. Furthermore, it suggests that the bulk of Praesepe white dwarfs did not gain a substantial recoil kick velocity from possible asymmetries in their loss of mass during the asymptotic giant branch phase of evolution. By comparing our estimates of the effective temperatures and the surface gravities of WD0833+194, WD0840+190, WD0840+205 and WD0843+184 to modern theoretical evolutionary tracks we have derived their masses to be in the range 0.72-0.76Msun and their cooling ages ~300Myrs. For an assumed cluster age of 625+/-50Myrs the infered progenitor masses are between 3.3-3.5Msun. Examining these new data in the context of the initial mass-final mass relation we find that it can be adequately represented by a linear function (a0=0.289+/-0.051, a1=0.133+/-0.015) over the initial mass range 2.7Msun to 6Msun. Assuming an extrapolation of this relation to larger initial masses is valid and adopting a maximum white dwarf mass of 1.3Msun, our results support a minimum mass for core-collapse supernovae progenitors in the range ~6.8-8.6Msun.
The initial-final mass relation (IFMR) represents the total mass lost by a star during the entirety of its evolution from the zero age main sequence to the white dwarf cooling track. The semi-empirical IFMR is largely based on observations of DA whit e dwarfs, the most common spectral type of white dwarf and the simplest atmosphere to model. We present a first derivation of the semi-empirical IFMR for hydrogen deficient white dwarfs (non-DA) in open star clusters. We identify a possible discrepancy between the DA and non-DA IFMRs, with non-DA white dwarfs $approx 0.07 M_odot$ less massive at a given initial mass. Such a discrepancy is unexpected based on theoretical models of non-DA formation and observations of field white dwarf mass distributions. If real, the discrepancy is likely due to enhanced mass loss during the final thermal pulse and renewed post-AGB evolution of the star. However, we are dubious that the mass discrepancy is physical and instead is due to the small sample size, to systematic issues in model atmospheres of non-DAs, and to the uncertain evolutionary history of Procyon B (spectral type DQZ). A significantly larger sample size is needed to test these assertions. In addition, we also present Monte Carlo models of the correlated errors for DA and non-DA white dwarfs in the initial-final mass plane. We find the uncertainties in initial-final mass determinations for individual white dwarfs can be significantly asymmetric, but the recovered functional form of the IFMR is grossly unaffected by the correlated errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا