ترغب بنشر مسار تعليمي؟ اضغط هنا

de Sitter Black Holes, Schottky Peaks, and Continuous Heat Engines

45   0   0.0 ( 0 )
 نشر من قبل Clifford V. Johnson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has uncovered Schottky-like peaks in the temperature dependence of key specific heats of certain black hole thermodynamic systems. They signal a finite window of available energy states for the underlying microscopic degrees of freedom. This paper reports on new families of peaks, found for the Kerr and Reissner-Nordstrom black holes in a spacetime with positive cosmological constant. It is known that a system with a highest energy, when coupled to two distinct heat baths, can naturally generate a thermodynamic instability, population inversion, a channel for work output. It is noted that these features are all present for de Sitter black holes. It is shown that there are trajectories in parameter space where they behave as generalized masers, operating as continuous heat engines, doing work by shedding angular momentum. It is suggested that bounds on efficiency due to the second law of thermodynamics for general de Sitter black hole solutions could provide powerful consistency checks.



قيم البحث

اقرأ أيضاً

The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravi ty parameters and gravitons mass modify the efficiency of engine on a significant level. Furthermore, it will be shown that it is possible to have the heat engine for non-spherical black holes in massive gravity and we study the effects of topological factor on properties of the heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with hyperbolic horizon, while the lowest one belongs to spherical black holes.
Robinson-Wilczeks recent work shows that, the energy momentum tensor flux required to cancel gravitational anomaly at the event horizon of a Schwarzschild-type black hole has an equivalent form to that of a (1+1)-dimensional blackbody radiation at th e Hawking temperature. Motivated by their work, Hawking radiation from the cosmological horizons of the general Schwarzschild-de Sitter and Kerr-de Sitter black holes, has been studied by the method of anomaly cancellation. The result shows that the absorbing gauge current and energy momentum tensor fluxes required to cancel gauge and gravitational anomalies at the cosmological horizon are precisely equal to those of Hawking radiation from it. It should be emphasized that the effective field theory for generic black holes in de Sitter spaces should be formulated within the region between the event horizon (EH) and the cosmological horizon (CH), to integrate out the classically irrelevant ingoing modes at the EH and the classically irrelevant outgoing modes at the CH, respectively.
69 - Norma G. Sanchez 2003
We provide a conceptual unified description of the quantum properties of black holes (BH), elementary particles, de Sitter (dS) and Anti de Sitter (AdS) string states.The conducting line of argument is the classical-quantum (de Broglie, Compton) dual ity here extended to the quantum gravity (string) regime (wave-particle-string duality). The semiclassical (QFT) and quantum (string) gravity regimes are respectively characterized and related: sizes, masses, accelerations and temperatures. The Hawking temperature, elementary particle and string temperatures are shown to be the same concept in different energy regimes and turn out the precise classical-quantum duals of each other; similarly, this result holds for the BH decay rate, heavy particle and string decay rates; BH evaporation ends as quantum string decay into pure (non mixed) radiation. Microscopic density of states and entropies in the two (semiclassical and quantum) gravity regimes are derived and related, an unifying formula for BH, dS and AdS states is provided in the two regimes. A string phase transition towards the dS string temperature (which is shown to be the precise quantum dual of the semiclassical (Hawking-Gibbons) dS temperature) is found and characterized; such phase transition does not occurs in AdS alone. High string masses (temperatures) show a further (square root temperature behaviour) sector in AdS. From the string mass spectrum and string density of states in curved backgrounds, quantum properties of the backgrounds themselves are extracted and the quantum mass spectrum of BH, dS and AdS radii obtained.
We study the thermodynamic properties of Schwarzschild-de Sitter (SdS) black hole and Reissner-Nordstr{o}m-de Sitter (RNdS) black hole in the view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynami cs, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit, which is consistent with the idea of Bousso and Hawking. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.
An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charge d, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For $dS$ background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in non-thermal pure quantum radiation (no information loss).(vi) New lower string bounds are given for the Kerr-Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical-quantum (wave-particle) duality, which is universal irrespective of any symmetry or isommetry of the space-time and of the number or the kind of space-time dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا