ﻻ يوجد ملخص باللغة العربية
The one-dimensional viscous conservation law is considered on the whole line $$ u_t + f(u)_x=eps u_{xx},quad (x,t)inRRtimesoverline{RP},quad eps>0, $$ subject to positive measure initial data. The flux $fin C^1(RR)$ is assumed to satisfy a $p-$condition, a weak form of convexity. Existence and uniqueness of solutions is established. The method of proof relies on sharp decay estimates for viscous Hamilton-Jacobi equations.
We discuss the minimal integrability needed for the initial data, in order that the Cauchy problem for a multi-dimensional conservation law admit an entropy solution. In particular we allow unbounded initial data. We investigate also the decay of the
Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531-676], we completely describe local conservation laws of second-order (1+1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of co
The direct method based on the definition of conserved currents of a system of differential equations is applied to compute the space of conservation laws of the (1+1)-dimensional wave equation in the light-cone coordinates. Then Noethers theorem yie
We study linear inhomogeneous kinetic equations with an external confining potential and a collision operator with several local conservation laws (local density, momentum and energy). We exhibit all equilibria and entropy-maximizing special modes, a
We show the convergence of the zero relaxation limit in systems of $2 times 2$ hyperbolic conservation laws with stochastic initial data. Precisely, solutions converge to a solution of the local equilibrium approximation as the relaxation time tends