ﻻ يوجد ملخص باللغة العربية
Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531-676], we completely describe local conservation laws of second-order (1+1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of conservation laws prove to be 0, 1, 2 and infinity. The canonical forms of equations with respect to contact equivalence are found for all nonzero dimensions of spaces of conservation laws.
We study linear inhomogeneous kinetic equations with an external confining potential and a collision operator with several local conservation laws (local density, momentum and energy). We exhibit all equilibria and entropy-maximizing special modes, a
The one-dimensional viscous conservation law is considered on the whole line $$ u_t + f(u)_x=eps u_{xx},quad (x,t)inRRtimesoverline{RP},quad eps>0, $$ subject to positive measure initial data. The flux $fin C^1(RR)$ is assumed to satisfy a
The direct method based on the definition of conserved currents of a system of differential equations is applied to compute the space of conservation laws of the (1+1)-dimensional wave equation in the light-cone coordinates. Then Noethers theorem yie
We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in
We investigate integrability of Euler-Lagrange equations associated with 2D second-order Lagrangians of the form begin{equation*} int f(u_{xx},u_{xy},u_{yy}) dxdy. end{equation*} By deriving integrability conditions for the Lagrangian density $f$, ex