ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic detection of a planet carving a gap in a protoplanetary disc

183   0   0.0 ( 0 )
 نشر من قبل Christophe Pinte
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We still do not understand how planets form, or why extra-solar planetary systems are so different from our own solar system. But the last few years have dramatically changed our view of the discs of gas and dust around young stars. Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) and extreme adaptive-optics systems have revealed that most --- if not all --- discs contain substructure, including rings and gaps, spirals, azimuthal dust concentrations, and shadows cast by misaligned inner discs. These features have been interpreted as signatures of newborn protoplanets, but the exact origin is unknown. Here we report the kinematic detection of a few Jupiter-mass planet located in a gas and dust gap at 130 au in the disc surrounding the young star HD 97048. An embedded planet can explain both the disturbed Keplerian flow of the gas, detected in CO lines, and the gap detected in the dust disc at the same radius. While gaps appear to be a common feature in protoplanetary discs, we present a direct correspondence between a planet and a dust gap, indicating that at least some gaps are the result of planet-disc interactions.



قيم البحث

اقرأ أيضاً

125 - C. Pinte , D.J. Price , F. Menard 2018
Discs of gas and dust surrounding young stars are the birthplace of planets. However, direct detection of protoplanets forming within discs has proved elusive to date. We present the detection of a large, localized deviation from Keplerian velocity i n the protoplanetary disc surrounding the young star HD163296. The observed velocity pattern is consistent with the dynamical effect of a two Jupiter-mass planet orbiting at a radius $approx$ 260au from the star.
94 Ceti is a triple star system with a circumprimary gas giant planet and far-infrared excess. Such excesses around main sequence stars are likely due to debris discs, and are considered as signposts of planetary systems and, therefore, provide impor tant insights into the configuration and evolution of the planetary system. Consequently, in order to learn more about the 94 Ceti system, we aim to precisely model the dust emission to fit its observed SED and to simulate its orbital dynamics. We interpret our APEX bolometric observations and complement them with archived Spitzer and Herschel bolometric data to explore the stellar excess and to map out background sources in the fields. Dynamical simulations and 3D radiative transfer calculations were used to constrain the debris disc configurations and model the dust emission. The best fit dust disc model for 94 Ceti implies a circumbinary disc around the secondary pair, limited by dynamics to radii smaller than 40 AU and with a grain size power-law distribution of ~a^-3.5. This model exhibits a dust-to-star luminosity ratio of 4.6+-0.4*10^-6. The system is dynamically stable and N-body symplectic simulations results are consistent with semi-analytical equations that describe orbits in binary systems. In the observations we also find tentative evidence of a circumtertiary ring that could be edge-on.
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Using HIFI on the Herschel Space Observatory we detect, for the first time, the ground-state rotational emission of ortho-NH$_3$ in a protoplanetary disk, around TW Hya. We use detailed models of the disks physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explore two radial distributions ( confined to $<$60 au like the millimeter-sized grains) and two vertical distributions (near the midplane where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. We use physical-chemical models to reproduce the fluxes with assuming that water and ammonia are co-spatial. We infer ammonia gas-phase masses of 0.7-11.0 $times$10$^{21}$ g. For water, we infer gas-phase masses of 0.2-16.0 $times$10$^{22}$ g. This corresponds to NH$_3$/H$_2$O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. Only in the most compact and settled adopted configuration is the inferred NH$_3$/H$_2$O consistent with interstellar ices and solar system bodies of $sim$ 5%-10%. Volatile release in the midplane may occur via collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, e.g., through growth of small grains into pebbles or larger.
Recent mm-wavelength surveys performed with the Atacama Large Millimeter Array (ALMA) have revealed protoplanetary discs characterized by rings and gaps. A possible explanation for the origin of such rings is the tidal interaction with an unseen plan etary companion. The protoplanetary disc around DS Tau shows a wide gap in the ALMA observation at 1.3 mm. We construct a hydrodynamical model for the dust continuum observed by ALMA assuming the observed gap is carved by a planet between one and five Jupiter masses. We fit the shape of the radial intensity profile along the disc major axis varying the planet mass, the dust disc mass, and the evolution time of the system. The best fitting model is obtained for a planet with $M_{rm p}=3.5,M_{rm Jup}$ and a disc with $M_{rm dust}= 9.6cdot10^{-5},M_{odot}$. Starting from this result, we also compute the expected signature of the planet in the gas kinematics, as traced by CO emission. We find that such a signature (in the form of a kink in the channel maps) could be observed by ALMA with a velocity resolution between $0.2-0.5,rm{kms}^{-1}$ and a beam size between 30 and 50 mas.
HD,139614 is known to be a $sim$14-Myr-old, possibly pre-main-sequence star in the Sco-Cen OB association in the Upper Centaurus-Lupus subgroup, with a slightly warped circumstellar disc containing ring structures hinting at one or more planets. The stars chemical abundance pattern is metal-deficient except for volatile elements, which places it in the $lambda$ Boo class and suggests it has recently accreted gas-rich but dust-poor material. We identify seven dipole and four radial pulsation modes among its $delta$ Sct pulsations using the TESS light curve and an echelle diagram. Precision modelling with the MESA stellar evolution and GYRE stellar oscillation programs confirms it is on the pre-main sequence. Asteroseismic, grid-based modelling suggests an age of $10.75pm0.77$ Myr, a mass of $1.52pm0.02$ M$_{odot}$, and a global metal abundance of $Z=0.0100pm0.0010$. This represents the first asteroseismic determination of the bulk metallicity of a $lambda$ Boo star. The precise age and metallicity offer a benchmark for age estimates in Upper Centaurus--Lupus, and for understanding disc retention and planet formation around intermediate-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا