ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the gap in the DS Tau disc hiding a planet?

350   0   0.0 ( 0 )
 نشر من قبل Benedetta Veronesi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent mm-wavelength surveys performed with the Atacama Large Millimeter Array (ALMA) have revealed protoplanetary discs characterized by rings and gaps. A possible explanation for the origin of such rings is the tidal interaction with an unseen planetary companion. The protoplanetary disc around DS Tau shows a wide gap in the ALMA observation at 1.3 mm. We construct a hydrodynamical model for the dust continuum observed by ALMA assuming the observed gap is carved by a planet between one and five Jupiter masses. We fit the shape of the radial intensity profile along the disc major axis varying the planet mass, the dust disc mass, and the evolution time of the system. The best fitting model is obtained for a planet with $M_{rm p}=3.5,M_{rm Jup}$ and a disc with $M_{rm dust}= 9.6cdot10^{-5},M_{odot}$. Starting from this result, we also compute the expected signature of the planet in the gas kinematics, as traced by CO emission. We find that such a signature (in the form of a kink in the channel maps) could be observed by ALMA with a velocity resolution between $0.2-0.5,rm{kms}^{-1}$ and a beam size between 30 and 50 mas.

قيم البحث

اقرأ أيضاً

105 - Ruobing Dong 2016
High contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models us ing disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combing 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap $h$, and to constrain the quantity $M_{rm p}^2/alpha$, where $M_{rm p}$ is the mass of the gap-opening planet and $alpha$ characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming $alpha=10^{-3}$, the derived planet mass in all cases are roughly between 0.1-1 $M_{rm J}$.
The abundance of short-period planetary systems with high orbital obliquities relative to the spin of their host stars is often taken as evidence that scattering processes play important roles in the formation and evolution of these systems. More rec ent studies have suggested that wide binary companions can tilt protoplanetary disks, inducing a high stellar obliquity that form through smooth processes like disk migration. DS Tuc Ab, a transiting planet with an 8.138 day period in the 40 Myr Tucana-Horologium association, likely orbits in the same plane as its now-dissipated protoplanetary disk, enabling us to test these theories of disk physics. Here, we report on Rossiter-McLaughlin observations of one transit of DS Tuc Ab with the Planet Finder Spectrograph on the Magellan Clay Telescope at Las Campanas Observatory. We confirm the previously detected planet by modeling the planet transit and stellar activity signals simultaneously. We test multiple models to describe the stellar activity-induced radial velocity variations over the night of the transit, finding the obliquity to be low: $lambda = 12 pm 13$ degrees, suggesting that this planet likely formed through smooth disk processes and its protoplanetary disk was not significantly torqued by DS Tuc B. The specific stellar activity model chosen affects the results at the $approx 5$ degree level. This is the youngest planet to be observed using this technique; we provide a discussion on best practices to accurately measure the observed signal of similar young planets.
275 - Barbara Ercolano 2016
The dispersal of the circumstellar discs of dust and gas surrounding young low- mass stars has important implications for the formation of planetary systems. Photo- evaporation from energetic radiation from the central object is thought to drive the dispersal in the majority of discs, by creating a gap which disconnects the outer from the inner regions of the disc and then disperses the outer disc from the inside-out, while the inner disc keeps draining viscously onto the star. In this Letter we show that the disc around TW Hya, the closest protoplanetary disc to Earth, may be the first object where a photoevaporative gap has been imaged around the time at which it is being created. Indeed the detected gap in the ALMA images is consistent with the expectations of X-ray photoevaporation models, thus not requiring the presence of a planet. The photoevaporation model is also consistent with a broad range of properties of the TW Hya system, e.g. accretion rate and the location of the gap at the onset of dispersal. We show that the central, unresolved 870 {mu}m continuum source might be produced by free free emission from the gas and/or residual dust inside the gap.
Transition discs are expected to be a natural outcome of the interplay between photoevaporation (PE) and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of disc dispersal due to PE through a process known as Planet-Induced PhotoEvaporation (PIPE). In this case, a cavity is formed as material inside the planetary orbit is removed by PE, leaving only the outer disc to drive the migration of the giant planet. We investigate the impact of PE on giant planet migration and focus specifically on the case of transition discs with an evacuated cavity inside the planet location. This is important for determining under what circumstances PE is efficient at halting the migration of giant planets, thus affecting the final orbital distribution of a population of planets. For this purpose, we use 2D FARGO simulations to model the migration of giant planets in a range of primordial and transition discs subject to PE. The results are then compared to the standard prescriptions used to calculate the migration tracks of planets in 1D planet population synthesis models. The FARGO simulations show that once the disc inside the planet location is depleted of gas, planet migration ceases. This contradicts the results obtained by the impulse approximation, which predicts the accelerated inward migration of planets in discs that have been cleared inside the planetary orbit. These results suggest that the impulse approximation may not be suitable for planets embedded in transition discs. A better approximation that could be used in 1D models would involve halting planet migration once the material inside the planetary orbit is depleted of gas and the surface density at the 3:2 mean motion resonance location in the outer disc reaches a threshold value of $0.01,mathrm{g,cm^{-2}}$.
241 - Zs. Regaly , Z. Dencs , A. Moor 2017
One possible explanation of the cavity in debris discs is the gravitational perturbation of an embedded giant planet. Planetesimals passing close to a massive body are dynamically stirred resulting in a cleared region known as the chaotic zone. Theor y of overlapping mean-motion resonances predicts the width of this cavity. To test whether this cavity is identical to the chaotic zone, we investigate the formation of cavities by means of collisionless N-body simulations assuming a 1.25-10 Jupiter mass planet with eccentricities of 0-0.9. Synthetic images at millimetre wavelengths are calculated to determine the cavity properties by fitting an ellipse to 14 percent contour level. Depending on the planetary eccentricity, e_pl, the elliptic cavity wall rotates as the planet orbits with the same (e_pl<0.2) or half (e_pl>0.2) period that of the planet. The cavity centre is offset from the star along the semi-major axis of the planet with a distance of d=0.1q^-0.17e_pl^0.5 in units of cavity size towards the planets orbital apocentre, where q is the planet-to-star mass ratio. Pericentre (apocentre) glow develops for e_pl<0.05 (e_pl>0.1), while both are present for 0.05<=e_pl<=0.1. Empirical formulae are derived for the sizes of the cavities: da_cav=2.35q^0.36 and da_cav=7.87q^0.37e_pl^0.38 for e_pl<=0.05 and e_pl>0.05, respectively. The cavity eccentricity, e_cav, equals to that of the planet only for 0.3<=e_pl<=0.6. A new method based on ALMA observations for estimating the orbital parameters and mass of the planet carving the cavity is also given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا