ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Inflation: inflating along an angular isometry of field space

120   0   0.0 ( 0 )
 نشر من قبل Yvette Welling
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The simplicity of the CMB data, so well described by single-field inflation, raises the question whether there might be an equally simple multi-field realization consistent with the observations. We explore the idea that an approximate angular shift symmetry in field space (an isometry) protects the dynamics of coupled inflationary perturbations. This idea relates to the recent observation that multi-field inflation mimics the predictions of single-field inflation, if the inflaton is efficiently and constantly coupled to a second massless degree of freedom (the isocurvature perturbation). In multi-field inflation, the inflationary trajectory is in general not aligned with the gradient of the potential. As a corollary the potential does not reflect the symmetries of perturbations. We propose a new method to reconstruct simultaneously a two-field action and an inflationary trajectory which proceeds along an `angular direction of field space, with a constant radius of curvature, and that has a controlled mass of `radial isocurvature perturbations (entropy mass). We dub this `Orbital Inflation. In this set-up the Hubble parameter determines the behavior of both the background and the perturbations. First, Orbital Inflation provides a playground for quasi-single field inflation. Second, the exquisite analytical control of these models allows us to exactly solve the phenomenology of Orbital Inflation with a small entropy mass and a small radius of curvature, a regime not previously explored. The predictions are single-field-like, although the consistency relations are violated. Moreover, the value of the entropy mass dictates how the inflationary predictions fan out in the ($n_s$, $r$) plane. Depending on the size of the self interactions of the isocurvature perturbations, the non-Gaussianity parameter $f_{NL}$ can range from slow-roll suppressed to $mathcal{O}(text{a few})$.



قيم البحث

اقرأ أيضاً

152 - Seoktae Koh 2009
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field potential is required to satisfy the three minimal conditions for successful inflation: i) $rho>0$, ii) $rho+3P < 0$ and iii) the slow-roll conditions. As an example, we consider the massive vector potential and small field type potential as like in scalar driven inflation.
We point out that the successful generation of the electroweak scale via gravitational instanton configurations in certain scalar-tensor theories can be viewed as the aftermath of a simple requirement: the existence of a quadratic pole with a suffici ently small residue in the Einstein-frame kinetic term for the Higgs field. In some cases, the inflationary dynamics may also be controlled by this residue and therefore related to the Fermi-to-Planck mass ratio, up to possible uncertainties associated with the instanton regularization. We present here a unified framework for this hierarchy generation mechanism, showing that the aforementioned residue can be associated with the curvature of the Einstein-frame target manifold in models displaying spontaneous breaking of dilatations. Our findings are illustrated through examples previously considered in the literature.
We study inflationary universes with an SU(3) gauge field coupled to an inflaton through a gauge kinetic function. Although the SU(3) gauge field grows at the initial stage of inflation due to the interaction with the inflaton, nonlinear self-couplin gs in the kinetic term of the gauge field become significant and cause nontrivial dynamics after sufficient growth. We investigate the evolution of the SU(3) gauge field numerically and reveal attractor solutions in the Bianchi type I spacetime. In general cases where all the components of the SU(3) gauge field have the same magnitude initially, they all tend to decay eventually because of the nonlinear self-couplings. Therefore, the cosmic no-hair conjecture generically holds in a mathematical sense. Practically, however, the anisotropy can be generated transiently in the early universe, even for an isotropic initial condition. Moreover, we find particular cases for which several components of the SU(3) gauge field survive against the nonlinear self-couplings. It occurs due to flat directions in the potential of a gauge field for Lie groups whose rank is higher than one. Thus, an SU(2) gauge field has a specialty among general non-Abelian gauge fields.
We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixin g conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.
We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected Slavnov-Taylor identities. We derive the corresponding consistency relations between correlation functions of cosmological perturbations in two different ways, by the connected and one-particle-irreducible Greens functions. The lowest-order consistency relations are explicitly given, and we find that even in multi-field inflation the consistency relations in the soft limit are independent of the detail of the matter sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا