ﻻ يوجد ملخص باللغة العربية
We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected Slavnov-Taylor identities. We derive the corresponding consistency relations between correlation functions of cosmological perturbations in two different ways, by the connected and one-particle-irreducible Greens functions. The lowest-order consistency relations are explicitly given, and we find that even in multi-field inflation the consistency relations in the soft limit are independent of the detail of the matter sector.
We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixin
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field
In holographic inflation, the $4D$ cosmological dynamics is postulated to be dual to the renormalization group flow of a $3D$ Euclidean conformal field theory with marginally relevant operators. The scalar potential of the $4D$ theory ---in which inf
The difficulty of building metastable vacua in string theory has led some to conjecture that, in the string theory landscape, potentials satisfy $left| abla V/Vright|geq csim mathcal{O}(1)$. This condition, which is supported by different explicit co
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial dif