ترغب بنشر مسار تعليمي؟ اضغط هنا

Pentagon at MEDIQA 2019: Multi-task Learning for Filtering and Re-ranking Answers using Language Inference and Question Entailment

73   0   0.0 ( 0 )
 نشر من قبل Hemant Pugaliya
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Parallel deep learning architectures like fine-tuned BERT and MT-DNN, have quickly become the state of the art, bypassing previous deep and shallow learning methods by a large margin. More recently, pre-trained models from large related datasets have been able to perform well on many downstream tasks by just fine-tuning on domain-specific datasets . However, using powerful models on non-trivial tasks, such as ranking and large document classification, still remains a challenge due to input size limitations of parallel architecture and extremely small datasets (insufficient for fine-tuning). In this work, we introduce an end-to-end system, trained in a multi-task setting, to filter and re-rank answers in the medical domain. We use task-specific pre-trained models as deep feature extractors. Our model achieves the highest Spearmans Rho and Mean Reciprocal Rank of 0.338 and 0.9622 respectively, on the ACL-BioNLP workshop MediQA Question Answering shared-task.

قيم البحث

اقرأ أيضاً

The TREC 2009 web ad hoc and relevance feedback tasks used a new document collection, the ClueWeb09 dataset, which was crawled from the general Web in early 2009. This dataset contains 1 billion web pages, a substantial fraction of which are spam --- pages designed to deceive search engines so as to deliver an unwanted payload. We examine the effect of spam on the results of the TREC 2009 web ad hoc and relevance feedback tasks, which used the ClueWeb09 dataset. We show that a simple content-based classifier with minimal training is efficient enough to rank the spamminess of every page in the dataset using a standard personal computer in 48 hours, and effective enough to yield significant and substantive improvements in the fixed-cutoff precision (estP10) as well as rank measures (estR-Precision, StatMAP, MAP) of nearly all submitted runs. Moreover, using a set of honeypot queries the labeling of training data may be reduced to an entirely automatic process. The results of classical information retrieval methods are particularly enhanced by filtering --- from among the worst to among the best.
This paper describes our competing system to enter the MEDIQA-2019 competition. We use a multi-source transfer learning approach to transfer the knowledge from MT-DNN and SciBERT to natural language understanding tasks in the medical domain. For tran sfer learning fine-tuning, we use multi-task learning on NLI, RQE and QA tasks on general and medical domains to improve performance. The proposed methods are proved effective for natural language understanding in the medical domain, and we rank the first place on the QA task.
Most approaches for similar text retrieval and ranking with long natural language queries rely at some level on queries and responses having words in common with each other. Recent applications of transformer-based neural language models to text retr ieval and ranking problems have been very promising, but still involve a two-step process in which result candidates are first obtained through bag-of-words-based approaches, and then reranked by a neural transformer. In this paper, we introduce novel approaches for effectively applying neural transformer models to similar text retrieval and ranking without an initial bag-of-words-based step. By eliminating the bag-of-words-based step, our approach is able to accurately retrieve and rank results even when they have no non-stopwords in common with the query. We accomplish this by using bidirectional encoder representations from transformers (BERT) to create vectorized representations of sentence-length texts, along with a vector nearest neighbor search index. We demonstrate both supervised and unsupervised means of using BERT to accomplish this task.
This paper explores the task of answer-aware questions generation. Based on the attention-based pointer generator model, we propose to incorporate an auxiliary task of language modeling to help question generation in a hierarchical multi-task learnin g structure. Our joint-learning model enables the encoder to learn a better representation of the input sequence, which will guide the decoder to generate more coherent and fluent questions. On both SQuAD and MARCO datasets, our multi-task learning model boosts the performance, achieving state-of-the-art results. Moreover, human evaluation further proves the high quality of our generated questions.
User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا