ﻻ يوجد ملخص باللغة العربية
We consider a family of evolution equations that generalize the Peierls-Nabarro model for crystal dislocations. They can be seen as semilinear parabolic reaction-diffusion equations in which the diffusion is regulated by a fractional Laplace operator of order $2 s in (0, 2)$ acting in one space dimension and the reaction is determined by a $1$-periodic multi-well potential. We construct solutions of these equations that represent the typical propagation of $N ge 2$ equally oriented dislocations of size $1$. For large times, the dislocations occur around points that evolve according to a repulsive dynamical system. When $s in (1/2, 1)$, these solutions are shown to be asymptotically stable with respect to odd perturbations.
This study is devoted to the long-term behavior of nucleation, growth and fragmentation equations, modeling the spontaneous formation and kinetics of large polymers in a spatially homogeneous and closed environment. Such models are, for instance, com
We consider the initial-value problem for the ``good Boussinesq equation on the line. Using inverse scattering techniques, the solution can be expressed in terms of the solution of a $3 times 3$-matrix Riemann-Hilbert problem. We establish formulas f
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the sol
We analyze the long-time asymptotics for the Degasperis--Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated $3 times 3$-matrix valued Riemann--Hilbert problem, we find an explicit formula for the lea
The Sasa-Satsuma equation with $3 times 3 $ Lax representation is one of the integrable extensions of the nonlinear Schr{o}dinger equation. In this paper, we consider the Cauchy problem of the Sasa-Satsuma equation with generic decaying initial data.