ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact object binary mergers driven by cluster tides: a new channel for LIGO/Virgo gravitational wave events

62   0   0.0 ( 0 )
 نشر من قبل Chris Hamilton
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detections of gravitational waves produced in mergers of binary black holes (BH) and neutron stars (NS) by LIGO/Virgo have stimulated interest in the origin of the progenitor binaries. Dense stellar systems - globular and nuclear star clusters - are natural sites of compact object binary formation and evolution towards merger. Here we explore a new channel for the production of binary mergers in clusters, in which the tidal field of the cluster secularly drives the binary to high eccentricity (even in the absence of a central massive black hole) until gravitational wave emission becomes important. We employ the recently developed secular theory of cluster tide-driven binary evolution to compute present day merger rates for BH-BH, NS-BH and NS-NS binaries, varying cluster potential and central concentration of the binary population (but ignoring cluster evolution and stellar flybys for now). Unlike other mechanisms, this new dynamical channel can produce a significant number of mergers out to cluster-centric distances of several pc. For NS-NS binaries we find merger rates in the range $0.01-0.07$ Gpc$^{-3}$ yr$^{-1}$ from globular clusters and $0.1-0.2$ Gpc$^{-3}$ yr$^{-1}$ from cusped nuclear clusters. For NS-BH and BH-BH binaries we find small merger rates from globular clusters, but a rate of $0.1 - 0.2$ Gpc$^{-3}$ yr$^{-1}$ from cusped nuclear clusters, contributing to the observed LIGO/Virgo rate at the level of several per cent. Therefore, cluster tide-driven mergers constitute a new channel that can be further explored with current and future gravitational wave detectors.

قيم البحث

اقرأ أيضاً

Recently we have witnessed the first multi-messenger detection of colliding neutron stars through Gravitational Waves (GWs) and Electromagnetic (EM) waves (GW170817), thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In thi s paper, we report on the RATIR followup observation strategies and show the results for the trigger G194575. This trigger is not of astrophysical interest; however, is of great interests to the robust design of a followup engine to explore large sky error regions. We discuss the development of an image-subtraction pipeline for the 6-color, optical/NIR imaging camera RATIR. Considering a two band ($i$ and $r$) campaign in the Fall of 2015, we find that the requirement of simultaneous detection in both bands leads to a factor $sim$10 reduction in false alarm rate, which can be further reduced using additional bands. We also show that the performance of our proposed algorithm is robust to fluctuating observing conditions, maintaining a low false alarm rate with a modest decrease in system efficiency that can be overcome utilizing repeat visits. Expanding our pipeline to search for either optical or NIR detections (3 or more bands), considering separately the optical $riZ$ and NIR $YJH$ bands, should result in a false alarm rate $approx 1%$ and an efficiency $approx 90%$. RATIRs simultaneous optical/NIR observations are expected to yield about one candidate transient in the vast 100 $mathrm{deg^2}$ LIGO error region for prioritized followup with larger aperture telescopes.
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$mathrm{M}_odot$ during the first and second observing runs of the Advanced gravitational-wave detector network. During the fir st observing run (O1), from September $12^mathrm{th}$, 2015 to January $19^mathrm{th}$, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November $30^mathrm{th}$, 2016 to August $25^mathrm{th}$, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818 and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between $18.6_{-0.7}^{+3.2}mathrm{M}_odot$, and $84.4_{-11.1}^{+15.8} mathrm{M}_odot$, and range in distance between $320_{-110}^{+120}$ Mpc and $2840_{-1360}^{+1400}$ Mpc. No neutron star - black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of $110, -, 3840$ $mathrm{Gpc}^{-3},mathrm{y}^{-1}$ for binary neutron stars and $9.7, -, 101$ $mathrm{Gpc}^{-3},mathrm{y}^{-1}$ for binary black holes assuming fixed population distributions, and determine a neutron star - black hole merger rate 90% upper limit of $610$ $mathrm{Gpc}^{-3},mathrm{y}^{-1}$.
We present results from offline searches of Fermi Gamma-ray Burst Monitor (GBM) data for gamma-ray transients coincident with the compact binary coalescences observed by the gravitational-wave (GW) detectors Advanced LIGO and Advanced Virgo during th eir first and second observing runs. In particular, we perform follow-up for both confirmed events and low significance candidates reported in the LIGO/Virgo catalog GWTC-1. We search for temporal coincidences between these GW signals and GBM triggered gamma-ray bursts (GRBs). We also use the GBM Untargeted and Targeted subthreshold searches to find coincident gamma-rays below the on-board triggering threshold. This work implements a refined statistical approach by incorporating GW astrophysical source probabilities and GBM visibilities of LIGO/Virgo sky localizations to search for cumulative signatures of coincident subthreshold gamma-rays. All search methods recover the short gamma-ray burst GRB 170817A occurring ~1.7 s after the binary neutron star merger GW170817. We also present results from a new search seeking GBM counterparts to LIGO single-interferometer triggers. This search finds a candidate joint event, but given the nature of the GBM signal and localization, as well as the high joint false alarm rate of $1.1 times 10^{-6}$ Hz, we do not consider it an astrophysical association. We find no additional coincidences.
We present a measurement of the Hubble constant $H_0$ using the gravitational wave (GW) event GW190814, which resulted from the coalescence of a 23 $M_odot$ black hole with a 2.6 $M_odot$ compact object, as a standard siren. No compelling electromagn etic counterpart has been identified for this event, thus our analysis accounts for thousands of potential host galaxies within a statistical framework. The redshift information is obtained from the photometric redshift (photo-$z$) catalog from the Dark Energy Survey. The luminosity distance is provided by the LIGO/Virgo gravitational wave sky map. Since this GW event has the second-smallest localization volume after GW170817, GW190814 is likely to provide the best constraint on cosmology from a single standard siren without identifying an electromagnetic counterpart. Our analysis uses photo-$z$ probability distribution functions and corrects for photo-$z$ biases. We also reanalyze the binary-black hole GW170814 within this updated framework. We explore how our findings impact the $H_0$ constraints from GW170817, the only GW merger associated with a unique host galaxy. From a combination of GW190814, GW170814 and GW170817, our analysis yields $H_0 = 72.0^{+ 12}_{- 8.2 }~{rm km~s^{-1}~Mpc^{-1}}$ (68% Highest Density Interval, HDI) for a prior in $H_0$ uniform between $[20,140]~{rm km~s^{-1}~Mpc^{-1}}$. The addition of GW190814 and GW170814 to GW170817 improves the 68% HDI from GW170817 alone by $sim 18%$, showing how well-localized mergers without counterparts can provide a significant contribution to standard siren measurements, provided that a complete galaxy catalog is available at the location of the event.
In light of the recent dazzling discovery of GW170817, we discuss several new scientific opportunities that would emerge in multi-messenger time-domain astrophysics if a facility like the next generation Very Large Array (ngVLA) were to work in tande m with ground-based gravitational wave (GW) detectors. These opportunities include probing wide-angle ejecta and off-axis afterglows of neutron star (NS)-NS mergers; enabling direct size measurements of radio ejecta from NS-NS mergers; and unraveling the physics behind the progenitors of compact binary mergers via host galaxy studies at radio wavelengths. Our results show that, thanks to its unprecedented sensitivity and resolution, the ngVLA will enable transformational results in the multi-messenger exploration of the transient radio sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا