ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments

57   0   0.0 ( 0 )
 نشر من قبل Georgios Leontidis
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective plant growth and yield prediction is an essential task for greenhouse growers and for agriculture in general. Developing models which can effectively model growth and yield can help growers improve the environmental control for better production, match supply and market demand and lower costs. Recent developments in Machine Learning (ML) and, in particular, Deep Learning (DL) can provide powerful new analytical tools. The proposed study utilises ML and DL techniques to predict yield and plant growth variation across two different scenarios, tomato yield forecasting and Ficus benjamina stem growth, in controlled greenhouse environments. We deploy a new deep recurrent neural network (RNN), using the Long Short-Term Memory (LSTM) neuron model, in the prediction formulations. Both the former yield, growth and stem diameter values, as well as the microclimate conditions, are used by the RNN architecture to model the targeted growth parameters. A comparative study is presented, using ML methods, such as support vector regression and random forest regression, utilising the mean square error criterion, in order to evaluate the performance achieved by the different methods. Very promising results, based on data that have been obtained from two greenhouses, in Belgium and the UK, in the framework of the EU Interreg SMARTGREEN project (2017-2021), are presented.



قيم البحث

اقرأ أيضاً

77 - Xinshi Chen , Hanjun Dai , Yu Li 2020
There is a recent surge of interest in designing deep architectures based on the update steps in traditional algorithms, or learning neural networks to improve and replace traditional algorithms. While traditional algorithms have certain stopping cri teria for outputting results at different iterations, many algorithm-inspired deep models are restricted to a ``fixed-depth for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances, either to avoid ``over-thinking, or because we want to compute less for operations converged already. In this paper, we tackle this varying depth problem using a steerable architecture, where a feed-forward deep model and a variational stopping policy are learned together to sequentially determine the optimal number of layers for each input instance. Training such architecture is very challenging. We provide a variational Bayes perspective and design a novel and effective training procedure which decomposes the task into an oracle model learning stage and an imitation stage. Experimentally, we show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks, including learning sparse recovery, few-shot meta learning, and computer vision tasks.
Across numerous applications, forecasting relies on numerical solvers for partial differential equations (PDEs). Although the use of deep-learning techniques has been proposed, actual applications have been restricted by the fact the training data ar e obtained using traditional PDE solvers. Thereby, the uses of deep-learning techniques were limited to domains, where the PDE solver was applicable. We demonstrate a deep-learning framework for air-pollution monitoring and forecasting that provides the ability to train across different model domains, as well as a reduction in the run-time by two orders of magnitude. It presents a first-of-a-kind implementation that combines deep-learning and domain-decomposition techniques to allow model deployments extend beyond the domain(s) on which the it has been trained.
Predicting clinical outcome is remarkably important but challenging. Research efforts have been paid on seeking significant biomarkers associated with the therapy response or/and patient survival. However, these biomarkers are generally costly and in vasive, and possibly dissatifactory for novel therapy. On the other hand, multi-modal, heterogeneous, unaligned temporal data is continuously generated in clinical practice. This paper aims at a unified deep learning approach to predict patient prognosis and therapy response, with easily accessible data, e.g., radiographics, laboratory and clinical information. Prior arts focus on modeling single data modality, or ignore the temporal changes. Importantly, the clinical time series is asynchronous in practice, i.e., recorded with irregular intervals. In this study, we formalize the prognosis modeling as a multi-modal asynchronous time series classification task, and propose a MIA-Prognosis framework with Measurement, Intervention and Assessment (MIA) information to predict therapy response, where a Simple Temporal Attention (SimTA) module is developed to process the asynchronous time series. Experiments on synthetic dataset validate the superiory of SimTA over standard RNN-based approaches. Furthermore, we experiment the proposed method on an in-house, retrospective dataset of real-world non-small cell lung cancer patients under anti-PD-1 immunotherapy. The proposed method achieves promising performance on predicting the immunotherapy response. Notably, our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
In manufacture, steel and other metals are mainly cut and shaped during the fabrication process by computer numerical control (CNC) machines. To keep high productivity and efficiency of the fabrication process, engineers need to monitor the real-time process of CNC machines, and the lifetime management of machine tools. In a real manufacturing process, breakage of machine tools usually happens without any indication, this problem seriously affects the fabrication process for many years. Previous studies suggested many different approaches for monitoring and detecting the breakage of machine tools. However, there still exists a big gap between academic experiments and the complex real fabrication processes such as the high demands of real-time detections, the difficulty in data acquisition and transmission. In this work, we use the spindle current approach to detect the breakage of machine tools, which has the high performance of real-time monitoring, low cost, and easy to install. We analyze the features of the current of a milling machine spindle through tools wearing processes, and then we predict the status of tool breakage by a convolutional neural network(CNN). In addition, we use a BP neural network to understand the reliability of the CNN. The results show that our CNN approach can detect tool breakage with an accuracy of 93%, while the best performance of BP is 80%.
Evaluation of deep reinforcement learning (RL) is inherently challenging. In particular, learned policies are largely opaque, and hypotheses about the behavior of deep RL agents are difficult to test in black-box environments. Considerable effort has gone into addressing opacity, but almost no effort has been devoted to producing high quality environments for experimental evaluation of agent behavior. We present TOYBOX, a new high-performance, open-source* subset of Atari environments re-designed for the experimental evaluation of deep RL. We show that TOYBOX enables a wide range of experiments and analyses that are impossible in other environments. *https://kdl-umass.github.io/Toybox/

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا