ﻻ يوجد ملخص باللغة العربية
ASASSN-14dx showed an extraordinary outburst whose features are the small outburst amplitude (~ 2.3 mag) and long duration (> 4 years). Because we found a long observational gap of 123 d before the outburst detection, we propose that the main outburst plateau was missed and that this outburst is just a fading tail often seen after the WZ Sge-type superoutbursts. In order to distinguish between WZ Sge and SU UMa-type dwarf novae (DNe), we investigated Gaia DR2 statistically. We applied a logistic regression model and succeeded in classifying by using absolute Gaia magnitudes $M_{G}$ and Gaia colors $G_{rm BP}-G_{rm RP}$. Our new classifier also suggests that ASASSN-14dx is the best candidate of a WZ Sge-type DN. We estimated distances from the earth of known WZ Sge stars by using Gaia DR2 parallaxes. The result indicates that ASASSN-14dx is the third nearest WZ Sge star (next to WZ Sge and V455 And), and hence the object can show the third brightest WZ Sge-type superoutburst whose maximum is $V$ = 8-9 mag.
We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the super
We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.0
We present the result of a multi-longitude campaign on the photometric study of the dwarf nova ASASSN-18fk during its superoutburst in 2018. It was observed with 18 telescopes at 15 sites during ~70 nights within a three-month interval. Observations
We carried out an international spectroscopic observation campaign of the dwarf nova GW Librae (GW Lib) during the 2007 superoutburst. Our observation period covered the rising phase of the superoutburst, maximum, slowly decaying phase (plateau), and
We report on the multi-wavelength photometry of the 2018 superoutburst in EG Cnc. We have detected stage A superhumps and long-lasting late-stage superhumps via the optical photometry and have constrained the binary mass ratio and its possible range.