ﻻ يوجد ملخص باللغة العربية
The realization of multiferroicity in 2D nanomaterials is crucially important for designing advanced nanoelectronic devices such as non-volatile multistate data storage. In this work, the coexistence of ferromagnetism and ferroelectricity is reported in monolayer SnTe system by transition metal (TM) doping. Based on first-principles calculations, the spontaneous spin polarization could be realized by TM doping in ferroelectric SnTe monolayer. In addition to in-plane ferroelectric polarization, the out-of-plane ferroelectric polarization emerges in Mn (Fe)-doped SnTe monolayer due to the internal displacement of TM from the surface. Interestingly, the crystalline field centered on TM and interaction between the dopant and Te gradually enhanced with the increment of atomic number of doping elements, which explains why the formation energy decreases. The realization of multiferroics in SnTe monolayer could provide theoretical guidance for experimental preparation of low-dimensional multiferroic materials.
Two dimensional magnetic materials, with tunable electronic properties could lead to new spintronic, magnetic and magneto-optic applications. Here, we explore intrinsic magnetic ordering in two dimensional monolayers of transition metal tri-halides (
As machine learning becomes increasingly important in engineering and science, it is inevitable that machine learning techniques will be applied to the investigation of materials, and in particular the structural phase transitions common in ferroelec
Recently, the celebrated Keldysh potential has been widely used to describe the Coulomb interaction of few-body complexes in monolayer transition-metal dichalcogenides. Using this potential to model charged excitons (trions), one finds a strong depen
Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors and doped semiconductors are often driven by long-wavelength Coulomb
Photoluminescence experiments from monolayer transition-metal dichalcogenides often show that the binding energy of trions is conspicuously similar to the energy of optical phonons. This enigmatic coincidence calls into question whether phonons are i