ترغب بنشر مسار تعليمي؟ اضغط هنا

Virtual trions in the photoluminescence of monolayer transition-metal dichalcogenides

90   0   0.0 ( 0 )
 نشر من قبل Hanan Dery
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoluminescence experiments from monolayer transition-metal dichalcogenides often show that the binding energy of trions is conspicuously similar to the energy of optical phonons. This enigmatic coincidence calls into question whether phonons are involved in the radiative recombination process. We address this problem, unraveling an intriguing optical transition mechanism. Its initial state is a localized charge (electron or hole) and delocalized exciton. The final state is the localized charge, phonon and photon. In between, the intermediate state of the system is a virtual trion formed when the localized charge captures the exciton through emission of the phonon. We analyze the difference between radiative recombinations that involve real and virtual trions (i.e., with and without a phonon), providing useful ways to distinguish between the two in experiment.

قيم البحث

اقرأ أيضاً

We present a many-body formalism for the simulation of time-resolved nonlinear spectroscopy and apply it to study the coherent interaction between excitons and trions in doped transition-metal dichalcogenides. Although the formalism can be straightfo rwardly applied in a first-principles manner, for simplicity we use a parameterized band structure and a static model dielectric function, both of which can be obtained from a calculation using the $GW$ approximation. Our simulation results shed light on the interplay between singlet and triplet trions in molybdenum- and tungsten-based compounds. Our two-dimensional electronic spectra are in excellent agreement with recent experiments and we accurately reproduce the beating of a cross-peak signal indicative of quantum coherence between excitons and trions. Although we confirm that the quantum beats in molybdenum-based monolayers unambigously reflect the exciton-trion coherence time, they are shown here to provide a lower-bound to the coherence time of tungsten analogues due to a destructive interference emerging from coexisting singlet and triplet trions.
Recently, the celebrated Keldysh potential has been widely used to describe the Coulomb interaction of few-body complexes in monolayer transition-metal dichalcogenides. Using this potential to model charged excitons (trions), one finds a strong depen dence of the binding energy on whether the monolayer is suspended in air, supported on SiO$_2$, or encapsulated in hexagonal boron-nitride. However, empirical values of the trion binding energies show weak dependence on the monolayer configuration. This deficiency indicates that the description of the Coulomb potential is still lacking in this important class of materials. We address this problem and derive a new potential form, which takes into account the three atomic sheets that compose a monolayer of transition-metal dichalcogenides. The new potential self-consistently supports (i) the non-hydrogenic Rydberg series of neutral excitons, and (ii) the weak dependence of the trion binding energy on the environment. Furthermore, we identify an important trion-lattice coupling due to the phonon cloud in the vicinity of charged complexes. Neutral excitons, on the other hand, have weaker coupling to the lattice due to the confluence of their charge neutrality and small Bohr radius.
Monolayer transition metal dichalcogenides are promising materials for valleytronic operations. They exhibit two inequivalent valleys in the Brillouin zone, and the valley populations can be directly controlled and determined using circularly polariz ed optical excitation and emission. The photoluminescence polarization reflects the ratio of the two valley populations. A wide range of values for the degree of circularly polarized emission, Pcirc, has been reported for monolayer WS2, although the reasons for the disparity are unclear. Here we optically populate one valley, and measure Pcirc to explore the valley population dynamics at room temperature in a large number of monolayer WS2 samples synthesized via chemical vapor deposition. Under resonant excitation, Pcirc ranges from 2% to 32%, and we observe a pronounced inverse relationship between photoluminescence (PL) intensity and Pcirc. High quality samples exhibiting strong PL and long exciton relaxation time exhibit a low degree of valley polarization, and vice versa. This behavior is also demonstrated in monolayer WSe2 samples and transferred WS2, indicating that this correlation may be more generally observed and account for the wide variations reported for Pcirc. Time resolved PL provides insight into the role of radiative and non-radiative contributions to the observed polarization. Short non-radiative lifetimes result in a higher measured polarization by limiting opportunity for depolarizing scattering events.
The optical properties of atomically thin transition metal dichalcogenide (TMDC) semiconductors are shaped by the emergence of correlated many-body complexes due to strong Coulomb interaction. Exceptional electron-hole exchange predestines TMDCs to s tudy fundamental and applied properties of Coulomb complexes such as valley depolarization of excitons and fine-structure splitting of trions. Biexcitons in these materials are less understood and it has been established only recently that they are spectrally located between exciton and trion. Here we show that biexcitons in monolayer TMDCs exhibit a distinct fine structure on the order of meV due to electron-hole exchange. Ultrafast pump-probe experiments on monolayer WSe$_2$ reveal decisive biexciton signatures and a fine structure in excellent agreement with a microscopic theory. We provide a pathway to access biexciton spectra with unprecedented accuracy, which is valuable beyond the class of TMDCs, and to understand even higher Coulomb complexes under the influence of electron-hole exchange.
To advance fundamental understanding, and ultimate application, of transition-metal dichalcogenide (TMD) monolayers, it is essential to develop capabilities for the synthesis of high-quality single-layer samples. Molecular beam epitaxy (MBE), a leadi ng technique for the fabrication of the highest-quality epitaxial films of conventional semiconductors has, however, typically yielded only small grain sizes and sub-optimal morphologies when applied to the van der Waals growth of monolayer TMDs. Here, we present a systematic study on the influence of adatom mobility, growth rate, and metal:chalcogen flux on the growth of NbSe2, VSe2 and TiSe2 using MBE. Through this, we identify the key drivers and influence of the adatom kinetics that control the epitaxial growth of TMDs, realising four distinct morphologies of the as-grown compounds. We use this to determine optimised growth conditions for the fabrication of high-quality monolayers, ultimately realising the largest grain sizes of monolayer TMDs that have been achieved to date via MBE growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا