ﻻ يوجد ملخص باللغة العربية
The search for materials with novel and unusual electronic properties is at the heart of condensed matter physics as well as the basis to develop conceptual new technologies. In this context, the correlated honeycomb transition metal oxides attract large attention for both, being a possible experimental realization of the theoretically predicted magnetic Kitaev exchange and the theoretical prospect of topological nontriviality. The Mott insulating sodium iridate is prototypical among these materials with the promising prospect to bridge the field of strongly correlated systems with topology, finally opening a path to a wide band gap material with exotic surface properties. Here, we report a profound study of the electronic properties of ultra-high-vacuum cleaved surfaces combining transport measurements with scanning tunneling techniques, showing that multiple conductive channels with differing nature are simultaneously apparent in this material. Most importantly, a V-shaped density of states and a low sheet resistance, in spite of a large defect concentration, point towards a topologically protected surface conductivity contribution. By incorporating the issue of the addressability of electronic states in the tunneling process, we develop a framework connecting previous experimental results as well as theoretical considerations.
The field of topological electronic materials has seen rapid growth in recent years, in particular with the increasing number of weakly interacting systems predicted and observed to host topologically non-trivial bands. Given the broad appearance of
Quantum materials (QMs) with strong correlation and non-trivial topology are indispensable to next-generation information and computing technologies. Exploitation of topological band structure is an ideal starting point to realize correlated topologi
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expect
We point out the generic competition between the Hunds coupling and the spin-orbit coupling in correlated materials, and this competition leads to an electronic dilemma between the Hunds metal and the relativistic insulators. Hunds metals refer to th