ترغب بنشر مسار تعليمي؟ اضغط هنا

Non uniform superconductivity in wires with strong spin-orbit coupling

140   0   0.0 ( 0 )
 نشر من قبل Julie Baumard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically the onset of nonuniform superconductivity in a one-dimensional single wire in presence of Zeeman (or exchange field) and spin-orbit coupling. Using the Greens function formalism, we show that the spin-orbit coupling stabilizes modulated superconductivity in a broad range of temperatures and Zeeman fields. We investigate the anisotropy of the temperature-Zeeman field phase diagram, which is related to the orientation of the Zeeman field. In particular, the inhomogeneous superconducting state disappears if this latter field is aligned or perpendicular to the wire direction. We identify two regimes corresponding to weak and strong spin-orbit coupling respectively. The wave-vector of the modulated phase is evaluated in both regimes. The results also pertain for quasi-1D superconductors made of weakly coupled 1D chains.



قيم البحث

اقرأ أيضاً

Recent discovery of Ising superconductivity protected against in-plane magnetic field by spin-orbit coupling (SOC) has stimulated intensive research interests. The effect, however, was only expected to appear in two-dimensional (2D) noncentrosymmetri c materials with spin-valley locking. In this work, we proposed a new type of Ising superconductivity in 2D materials with $C_{nz}$ rotational symmetry ($n=3,4,6$). This mechanism, dubbed as type-II Ising superconductivity, is applicable for centrosymmetric materials. Type-II Ising superconductivity relies on the SOC-induced spin-orbital locking characterized by Ising-type Zeeman-like fields displaying opposite signs for opposing orbitals. We found that type-II Ising superconductivity are most prominent around time-reversal invariant momenta and is not sensitive to inversion symmetry breaking. By performing high-throughput first-principles calculations, about one hundred candidate materials were identified. Our work significantly enriches the physics and materials of Ising superconductor, opening new opportunities for fundamental research and practical applications of 2D materials.
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire (QW) with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the QW axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the QW. The results may provide a possible explanation for the sign-switching anisotropic TMR recently observed in the LaAlO$_3$/SrTiO$_3$ interface.
346 - P. P. Kong , F. Sun , L.Y. Xing 2014
Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand w as found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. High pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.
336 - Cong Ren , Hai Zi (1 2021
A notable characteristic of PbTaSe$_2$, a prototypical noncentrosymmetric (NCS) superconductor, is that its superconductivity can be modulated through a structural transition under hydrostatic pressure [Phys. Rev. B 95, 224508 (2017)]. Here we report on simultaneous pressure-sensitive point-contact Andreev reflection (PCAR) spectroscopy and bulk resistance measurements on PbTaSe$_2$, to elucidate the nature of the surface and bulk superconductivity and their evolution with hydrostatic pressure. It is found that in high pressure region the superconducting gap opening temperature $T_c^A$ is significantly lower that the bulk resistive transition temperature $T_c^R$, revealing a clear experimental signature of surface-bulk separation associated with enhanced antisymmetric spin-orbit coupling (ASOC). The PCAR spectra, reflecting the superconducting surface state, are analyzed with the Blonder-Tinkham-Klapwijk theory, yielding an isotropic $s$-wave full BCS-gap in the strong coupling regime. Analysis based on a modified McMillan formula indicates a sizable coupling strength contributed from ASOC for the superconducting surface state. These results suggest the coexistence of full gap $s$-wave superconductivity and topological surface states in PbTaSe$_2$, indicating that this NSC with significantly enhanced ASOC may offer a solid platform to investigate the topological aspect in the superconducting condensate.
Recently, topological superconductors based on Josephson junctions in two-dimensional electron gases with strong Rashba spin-orbit coupling have been proposed as attractive alternatives to wire-based setups. Here, we elucidate how phase-controlled Jo sephson junctions based on quantum wells with [001] growth direction and an arbitrary combination of Rashba and Dresselhaus spin-orbit coupling can also host Majorana bound states for a wide range of parameters as long as the magnetic field is oriented appropriately. Hence, Majorana bound states based on Josephson junctions can appear in a wide class of two-dimensional electron gases. We study the effect of spin-orbit coupling, the Zeeman energies, and the superconducting phase difference to create a full topological phase diagram and find the optimal stability region to observe Majorana bound states in narrow junctions. Surprisingly, for equal Rashba and Dresselhaus spin-orbit coupling, well localized Majorana bound states can appear only for phase differences $phi eqpi$ as the topological gap protecting the Majorana bound states vanishes at $phi=pi$. Our results show that the ratio between Rashba and Dresselhaus spin-orbit coupling or the choice of the in-plane crystallographic axis along which the superconducting phase bias is applied offer additional tunable knobs to test Majorana bound states in these systems. Finally, we discuss signatures of Majorana bound states that could be probed experimentally by tunneling conductance measurements at the edge of the junction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا