ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning Topological Superconductivity in Phase-Controlled Josephson Junctions with Rashba and Dresselhaus Spin-Orbit Coupling

160   0   0.0 ( 0 )
 نشر من قبل Benedikt Scharf
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, topological superconductors based on Josephson junctions in two-dimensional electron gases with strong Rashba spin-orbit coupling have been proposed as attractive alternatives to wire-based setups. Here, we elucidate how phase-controlled Josephson junctions based on quantum wells with [001] growth direction and an arbitrary combination of Rashba and Dresselhaus spin-orbit coupling can also host Majorana bound states for a wide range of parameters as long as the magnetic field is oriented appropriately. Hence, Majorana bound states based on Josephson junctions can appear in a wide class of two-dimensional electron gases. We study the effect of spin-orbit coupling, the Zeeman energies, and the superconducting phase difference to create a full topological phase diagram and find the optimal stability region to observe Majorana bound states in narrow junctions. Surprisingly, for equal Rashba and Dresselhaus spin-orbit coupling, well localized Majorana bound states can appear only for phase differences $phi eqpi$ as the topological gap protecting the Majorana bound states vanishes at $phi=pi$. Our results show that the ratio between Rashba and Dresselhaus spin-orbit coupling or the choice of the in-plane crystallographic axis along which the superconducting phase bias is applied offer additional tunable knobs to test Majorana bound states in these systems. Finally, we discuss signatures of Majorana bound states that could be probed experimentally by tunneling conductance measurements at the edge of the junction.



قيم البحث

اقرأ أيضاً

108 - Shin-ichi Hikino 2018
We theoretically investigate the magnetization inside a normal metal containing the Rashba spin-orbit interaction (RSOI) induced by the proximity effect in an s-wave superconductor/normal metal/ferromagnetic metal/s-wave superconductor (S/N/F/S) Jose phson junction. By solving the linearized Usadel equation taking account of the RSOI,we find that the direction of the magnetization induced by the proximity effect in N can be reversed by tuning the RSOI.Moreover, we also find that the direction of the magnetization inside N can be reversed by changing the superconducting phase difference, i.e., Josephson phase. From these results, it is expected that the dependence of the magnetization on the RSOI and Josephson phase can be applied to superconducting spintronics.
Skyrmions are topological spin textures of interest for fundamental science and applications. Previous theoretical studies have focused on systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. We investi gate here systems that break surface inversion symmetry, in addition to possible broken bulk inversion. This leads to two distinct Dzyaloshinskii-Moriya (DM) terms with strengths $D_perp$, arising from Rashba spin-orbit coupling (SOC), and $D_parallel$ from Dresselhaus SOC. We show that skyrmions become progressively more stable with increasing $D_perp/D_parallel$, extending into the regime of easy-plane anisotropy. We find that the spin texture and topological charge density of skyrmions develops nontrivial spatial structure, with quantized topological charge in a unit cell given by a Chern number. Our results give a design principle for tuning Rashba SOC and magnetic anisotropy to stabilize skyrmions in thin films, surfaces, interfaces and bulk magnetic materials that break mirror symmetry.
72 - G. Singh , A. Jouan , S. Hurand 2016
A rather unique feature of the two-dimensional electron gas (2-DEG) formed at the interface between the two insulators LaAlO3 and SrTiO3 is to host both gate-tunable superconductivity and strong spin-orbit coupling. In the present work, we use the di sorder generated by Cr substitution of Al atoms in LaAlO3 as a tool to explore the nature of superconductivity and spin-orbit coupling in these interfaces. A reduction of the superconducting Tc is observed with Cr doping consistent with an increase of electron-electron interaction in presence of disorder. In addition, the evolution of spin-orbit coupling with gate voltage and Cr doping suggests a DYakonov-Perel mechanism of spin relaxation in the presence of a Rashba-type spin-orbit interaction.
We study a superconductor-normal state-superconductor (SNS) Josephson junction along the edge of a quantum spin Hall insulator (QSHI) with a superconducting $pi$-phase across the junction. We solve self-consistently for the superconducting order para meter and find both real junctions, where the order parameter is fully real throughout the system, and junctions where the order parameter has a complex phase winding. Real junctions host two Majorana zero modes (MZMs), while phase-winding junctions have no subgap states close to zero energy. At zero temperature we find that the phase-winding solution always has the lowest free energy, which we establish being due to a strong proximity-effect into the N region. With increasing temperature this proximity-effect is dramatically decreased and we find a phase transition into a real junction with two MZMs.
We study Andreev reflection and Andreev levels $varepsilon$ in Zeeman-split superconductor/Rashba wire/Zeeman-split superconductor junctions by solving the Bogoliubov de-Gennes equation. We theoretically demonstrate that the Andreev levels $varepsilo n$ can be controlled by tuning either the strength of Rashba spin-orbit interaction or the relative direction of the Rashba spin-orbit interaction and the Zeeman field. In particular, it is found that the magnitude of the band splitting is tunable by the strength of the Rashba spin-orbit interaction and the rength of the wire, which can be interpreted by a spin precession in the Rashba wire. We also find that if the Zeeman field in the superconductor has the component parallel to the direction of the junction, the $varepsilon$-$phi$ curve becomes asymmetric with respect to the superconducting phase difference $phi$. Whereas the Andreev reflection processes associated with each pseudospin band are sensitive to the relative orientation of the spin-orbit field and the exchange field, the total electric conductance interestingly remains invariant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا