ﻻ يوجد ملخص باللغة العربية
Bragg coherent diffraction imaging (BCDI), the well-established technique for imaging internal strain of nanoparticles, was used to image the internal compositional distribution of binary alloys in thermal equilibrium. The images experimentally obtained for Pd-Rh alloy nanoparticles are presented and discussed. The direct correspondence between the lattice strain and the compositional deviation is discussed in the derivation of the BCDI displacement field aided by illustrations.
Bimetallic catalysts can undergo segregation or redistribution of the metals driven by oxidizing and reducing environments. Bragg coherent diffraction imaging (BCDI) was used to relate displacement fields to compositional distributions in crystalline
Manipulating magnetic domains is essential for many technological applications. Recent breakthroughs in Antiferromagnetic Spintronics brought up novel concepts for electronic device development. Imaging antiferromagnetic domains is of key importance
Coherent diffraction imaging (CDI) on Bragg reflections is a promising technique for the study of three-dimensional (3D) composition and strain fields in nanostructures, which can be recovered directly from the coherent diffraction data recorded on s
We present here an overview of Coherent X-ray Diffraction Imaging (CXDI) with its application to nanostructures. This imaging approach has become especially important recently due to advent of X-ray Free-Electron Lasers (XFEL) and its applications to
Measurement modalities in Bragg coherent diffraction imaging (BCDI) rely on finding signal from a single nanoscale crystal object, which satisfies the Bragg condition among a large number of arbitrarily oriented nanocrystals. However, even when the s