ﻻ يوجد ملخص باللغة العربية
We consider a ground-state wide-gap band insulator turning into a nonequilibrium excitonic insulator (NEQ-EI) upon visiting properly selected and physically relevant highly excited states. The NEQ-EI phase, characterized by self-sustained oscillations of the complex order parameter, neatly follows from a Nonequilibrium Greens Function treatment on the Konstantinov-Perel contour. We present the first {em ab initio} band structure of LiF, a ground-state bulk insulator, in different NEQ-EI states and show that these states can be generated by currently available pump pulses. We highlight two general features of time-resolved ARPES spectra: (1) during the pump-driving the excitonic spectral structure undergoes a convex-to-concave shape transition and {em concomitantly} the state of the system goes through a BEC-BCS crossover; (2) attosecond pulses shone after the pump-driving at different times $t_{rm delay}$ generate a photocurrent which {em oscillates} in $t_{rm delay}$ with a pump-tunable frequency -- we show that this phenomenon is similar to the AC response of an exotic Josephson junction.
Transport in Josephson junctions is commonly described using a simplifying assumption called the Andreev approximation, which assumes that excitations are fixed at the Fermi momentum and only Andreev reflections occur at interfaces (with no normal re
We present a theory of superconducting p-n junctions. We consider a 2-band model of doped bulk semiconductors with attractive interactions between the charge carriers and derive the superconducting order parameter, the quasiparticle density of states
The condensation of spin-orbit-induced excitons in $(t_{2g})^4$ electronic systems is attracting considerable attention. In the large Hubbard U limit, antiferromagnetism was proposed to emerge from the Bose-Einstein Condensation (BEC) of triplons ($J
We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along t
We report on the observation of the Josephson effect between two strongly interacting fermionic superfluids coupled through a thin tunneling barrier. We prove that the relative population and phase are canonically conjugate dynamical variables, coher