ﻻ يوجد ملخص باللغة العربية
We report on the observation of the Josephson effect between two strongly interacting fermionic superfluids coupled through a thin tunneling barrier. We prove that the relative population and phase are canonically conjugate dynamical variables, coherently oscillating throughout the entire crossover from molecular Bose-Einstein condensates (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluids. We measure the plasma frequency and we extract the Josephson coupling energy, both exhibiting a non-monotonic behavior with a maximum near the crossover regime. We also observe the transition from coherent to dissipative dynamics, which we directly ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids, opening the door to the study of the dynamics of superfluid Fermi systems in the presence of strong correlations and fluctuations.
We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along t
We investigate dipole oscillations of ultracold Fermi gases along the BEC-BCS crossover through disordered potentials. We observe a disorder-induced damping of oscillations as well as a change of the fundamental Kohn-mode frequency. The measurement r
We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We
Motivated by the recent realization of the Haldane model in shaking optical lattice, we investigate the effects of attractive interaction and BEC-BCS crossover in this model at and away from half filling. We show that, contrary to the usual s-wave BE
Reconnecting vortices in a superfluid allow for the energy transfer between different length scales and its subsequent dissipation. The present picture assumes that the dynamics of a reconnection is driven mostly by the phase of the order parameter,