ترغب بنشر مسار تعليمي؟ اضغط هنا

The specific angular momentum radial profile in dense cores: improved initial conditions for disk formation

249   0   0.0 ( 0 )
 نشر من قبل Jaime Pineda E
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The determination of the specific angular momentum radial profile, $j(r)$, in the early stages of star formation is crucial to constrain star and circumstellar disk formation theories. The specific angular momentum is directly related to the largest Keplerian disk possible, and it could constrain the angular momentum removal mechanism. We determine $j(r)$ towards two Class 0 objects and a first hydrostatic core candidate in the Perseus cloud, which is consistent across all three sources and well fit with a single power-law relation between 800 and 10,000,au: $j_{fit}(r)=10^{-3.60pm0.15}left(r/textrm{1,000au}right)^{1.80pm0.04}$ km s$^{-1}$ pc. This power-law relation is in between solid body rotation ($propto r^2$) and pure turbulence ($propto r^{1.5}$). This strongly suggests that even at 1,000,au, the influence of the dense cores initial level of turbulence or the connection between core and the molecular cloud is still present. The specific angular momentum at 10,000,au is $approx3times$ higher than previously estimated, while at 1,000,au it is lower by $2times$. We do not find a region of conserved specific angular momentum, although it could still be present at a smaller radius. We estimate an upper limit to the largest Keplerian disk radius of 60,au, which is small but consistent with published upper limits. Finally, these results suggest that more realistic initial conditions for numerical simulations of disk formation are needed. Some possible solutions include: a) use a larger simulation box to include some level of driven turbulence or connection to the parental cloud, or b) incorporate the observed $j(r)$ to setup the dense core kinematics initial conditions.

قيم البحث

اقرأ أيضاً

We present combined interferometer and single dish telescope data of NH3 (J,K) = (1,1) and (2,2) emission towards the clustered star forming Ophiuchus B, C and F Cores at high spatial resolution (~1200 AU) using the Australia Telescope Compact Array, the Very Large Array, and the Green Bank Telescope. While the large scale features of the NH3 (1,1) integrated intensity appear similar to 850 micron continuum emission maps of the Cores, on 15 (1800 AU) scales we find significant discrepancies between the dense gas tracers in Oph B, but good correspondence in Oph C and F. Using the Clumpfind structure identifying algorithm, we identify 15 NH3 clumps in Oph B, and 3 each in Oph C and F. Only five of the Oph B NH3 clumps are coincident within 30 (3600 AU) of a submillimeter clump. We find v_LSR varies little across any of the Cores, and additionally varies by only ~1.5 km/s between them. The observed NH3 line widths within the Oph B and F Cores are generally large and often mildly supersonic, while Oph C is characterized by narrow line widths which decrease to nearly thermal values. We find several regions of localized narrow line emission (Delta v < 0.4 km/s), some of which are associated with NH3 clumps. We derive the kinetic temperatures of the gas, and find they are remarkably constant across Oph B and F, with a warmer mean value (T_K = 15 K) than typically found in isolated regions and consistent with previous results in clustered regions. Oph C, however, has a mean T_K = 12 K, decreasing to a minimum T_K = 9.4 K towards the submillimeter continuum peak, similar to previous studies of isolated starless cores. There is no significant difference in temperature towards protostars embedded in the Cores. [Abridged]
We propose an evolutionary path for prestellar cores on the radius-mass diagram, which is analogous to stellar evolutionary paths on the Hertzsprung-Russell Diagram. Using James Clerk Maxwell Telescope (JCMT) observations of L1688 in the Ophiuchus st ar-forming complex, we analyse the HCO+ (J=4rightarrow3) spectral line profiles of prestellar cores. We find that of the 58 cores observed, 14 show signs of infall in the form of a blue-asymmetric double-peaked line profile. These 14 cores all lie beyond the Jeans mass line for the region on a radius-mass plot. Furthermore another 10 cores showing tentative signs of infall, in their spectral line profile shapes, appear on or just over the Jeans mass line. We therefore propose the manner in which a prestellar core evolves across this diagram. We hypothesise that a core is formed in the low-mass, low-radius region of the plot. It then accretes quasistatically, increasing in both mass and radius. When it crosses the limit of gravitational instability it begins to collapse, decreasing in radius, towards the region of the diagram where protostellar cores are seen.
283 - Frederique Motte 2008
As Pr. Th. Henning said at the conference, cold precursors of high-mass stars are now hot topics. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class 0 protostars an d pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.
The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular, it is unclear whether angular momentum growth is stochastic. To address this question, we extend the genetic modification technique to allow control over the angular momentum of any region in the initial conditions. Using this technique to produce a sequence of modified simulations, we can then investigate whether changes to the angular momentum of a specified region in the evolved universe can be accurately predicted from changes in the initial conditions alone. We find that the angular momentum in regions with modified initial conditions can be predicted between 2 and 4 times more accurately than expected from applying tidal torque theory. This result is masked when analysing the angular momentum of haloes, because particles in the outskirts of haloes dominate the angular momentum budget. We conclude that the angular momentum of Lagrangian patches is highly predictable from the initial conditions, with apparent chaotic behaviour being driven by stochastic changes to the arbitrary boundary defining the halo.
We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at $z=0$ by combining i) the standard $Lambda$CDM tidal torque theory ii) the observed relation between stellar mass and specific angular momentum (Fall relation) a nd iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio $f_j = j_ast/j_{rm h}$ of the specific angular momentum of stars to that of the dark matter i) varies with mass as a double power-law, ii) it always has a peak in the mass range explored and iii) it is $3-5$ times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of $f_j$ occurs at the same mass where the stellar-to-halo mass ratio $f_ast = M_ast/M_{rm h}$ has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires $f_j$ and $f_ast$ to be correlated with each other roughly as $f_jpropto f_ast^{2/3}$, as expected if the outer and more angular momentum rich parts of a halo failed to accrete onto the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا