ﻻ يوجد ملخص باللغة العربية
We propose an evolutionary path for prestellar cores on the radius-mass diagram, which is analogous to stellar evolutionary paths on the Hertzsprung-Russell Diagram. Using James Clerk Maxwell Telescope (JCMT) observations of L1688 in the Ophiuchus star-forming complex, we analyse the HCO+ (J=4rightarrow3) spectral line profiles of prestellar cores. We find that of the 58 cores observed, 14 show signs of infall in the form of a blue-asymmetric double-peaked line profile. These 14 cores all lie beyond the Jeans mass line for the region on a radius-mass plot. Furthermore another 10 cores showing tentative signs of infall, in their spectral line profile shapes, appear on or just over the Jeans mass line. We therefore propose the manner in which a prestellar core evolves across this diagram. We hypothesise that a core is formed in the low-mass, low-radius region of the plot. It then accretes quasistatically, increasing in both mass and radius. When it crosses the limit of gravitational instability it begins to collapse, decreasing in radius, towards the region of the diagram where protostellar cores are seen.
In their survey paper of prestellar cores with SCUBA, Kirk et al. (2005) have discarded two of our papers on L183 (Pagani et al. 2003, 2004). However these papers bring two important pieces of information that they cannot ignore. Namely, the real str
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili
The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin
We present observations of L1155 and L1148 in the Cepheus molecular cloud, taken using the FIS instrument on the Akari satellite. We compare these data to submillimetre data taken using the SCUBA camera on the JCMT, and far-infrared data taken with t
Recent theoretical studies have suggested that a magnetic field may play a crucial role in the first star formation in the universe. However, the influence of the magnetic field on the first star formation has yet to be understood well. In this study