ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Neural Language Modeling via Adversarial Training

106   0   0.0 ( 0 )
 نشر من قبل Dilin Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, substantial progress has been made in language modeling by using deep neural networks. However, in practice, large scale neural language models have been shown to be prone to overfitting. In this paper, we present a simple yet highly effective adversarial training mechanism for regularizing neural language models. The idea is to introduce adversarial noise to the output embedding layer while training the models. We show that the optimal adversarial noise yields a simple closed-form solution, thus allowing us to develop a simple and time efficient algorithm. Theoretically, we show that our adversarial mechanism effectively encourages the diversity of the embedding vectors, helping to increase the robustness of models. Empirically, we show that our method improves on the single model state-of-the-art results for language modeling on Penn Treebank (PTB) and Wikitext-2, achieving test perplexity scores of 46.01 and 38.07, respectively. When applied to machine translation, our method improves over various transformer-based translation baselines in BLEU scores on the WMT14 English-German and IWSLT14 German-English tasks.

قيم البحث

اقرأ أيضاً

Transformer models have achieved state-of-the-art results across a diverse range of domains. However, concern over the cost of training the attention mechanism to learn complex dependencies between distant inputs continues to grow. In response, solut ions that exploit the structure and sparsity of the learned attention matrix have blossomed. However, real-world applications that involve long sequences, such as biological sequence analysis, may fall short of meeting these assumptions, precluding exploration of these models. To address this challenge, we present a new Transformer architecture, Performer, based on Fast Attention Via Orthogonal Random features (FAVOR). Our mechanism scales linearly rather than quadratically in the number of tokens in the sequence, is characterized by sub-quadratic space complexity and does not incorporate any sparsity pattern priors. Furthermore, it provides strong theoretical guarantees: unbiased estimation of the attention matrix and uniform convergence. It is also backwards-compatible with pre-trained regular Transformers. We demonstrate its effectiveness on the challenging task of protein sequence modeling and provide detailed theoretical analysis.
Abbreviation disambiguation is important for automated clinical note processing due to the frequent use of abbreviations in clinical settings. Current models for automated abbreviation disambiguation are restricted by the scarcity and imbalance of la beled training data, decreasing their generalizability to orthogonal sources. In this work we propose a novel data augmentation technique that utilizes information from related medical concepts, which improves our models ability to generalize. Furthermore, we show that incorporating the global context information within the whole medical note (in addition to the traditional local context window), can significantly improve the models representation for abbreviations. We train our model on a public dataset (MIMIC III) and test its performance on datasets from different sources (CASI, i2b2). Together, these two techniques boost the accuracy of abbreviation disambiguation by almost 14% on the CASI dataset and 4% on i2b2.
Adversarial attack has recently become a tremendous threat to deep learning models. To improve the robustness of machine learning models, adversarial training, formulated as a minimax optimization problem, has been recognized as one of the most effec tive defense mechanisms. However, the non-convex and non-concave property poses a great challenge to the minimax training. In this paper, we empirically demonstrate that the commonly used PGD attack may not be optimal for inner maximization, and improved inner optimizer can lead to a more robust model. Then we leverage a learning-to-learn (L2L) framework to train an optimizer with recurrent neural networks, providing update directions and steps adaptively for the inner problem. By co-training optimizers parameters and models weights, the proposed framework consistently improves the model robustness over PGD-based adversarial training and TRADES.
Despite success on a wide range of problems related to vision, generative adversarial networks (GANs) often suffer from inferior performance due to unstable training, especially for text generation. To solve this issue, we propose a new variational G AN training framework which enjoys superior training stability. Our approach is inspired by a connection of GANs and reinforcement learning under a variational perspective. The connection leads to (1) probability ratio clipping that regularizes generator training to prevent excessively large updates, and (2) a sample re-weighting mechanism that improves discriminator training by downplaying bad-quality fake samples. Moreover, our variational GAN framework can provably overcome the training issue in many GANs that an optimal discriminator cannot provide any informative gradient to training generator. By plugging the training approach in diverse state-of-the-art GAN architectures, we obtain significantly improved performance over a range of tasks, including text generation, text style transfer, and image generation.
Generative adversarial networks (GAN) have shown remarkable results in image generation tasks. High fidelity class-conditional GAN methods often rely on stabilization techniques by constraining the global Lipschitz continuity. Such regularization lea ds to less expressive models and slower convergence speed; other techniques, such as the large batch training, require unconventional computing power and are not widely accessible. In this paper, we develop an efficient algorithm, namely FastGAN (Free AdverSarial Training), to improve the speed and quality of GAN training based on the adversarial training technique. We benchmark our method on CIFAR10, a subset of ImageNet, and the full ImageNet datasets. We choose strong baselines such as SNGAN and SAGAN; the results demonstrate that our training algorithm can achieve better generation quality (in terms of the Inception score and Frechet Inception distance) with less overall training time. Most notably, our training algorithm brings ImageNet training to the broader public by requiring 2-4 GPUs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا