ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear elliptic equations on the upper half space

124   0   0.0 ( 0 )
 نشر من قبل Meijun Zhu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we shall classify all positive solutions of $ Delta u =a u^p$ on the upper half space $ H =Bbb{R}_+^n$ with nonlinear boundary condition $ {partial u}/{partial t}= - b u^q $ on $partial H$ for both positive parameters $a, b>0$. We will prove that for $p ge {(n+2)}/{(n-2)}, 1leq q<{n}/{(n-2)}$ (and $n ge 3$) all positive solutions are functions of last variable; for $p= {(n+2)}/{(n-2)}, q= {n}/{(n-2)}$ (and $n ge 3$) positive solutions must be either some functions depending only on last variable, or radially symmetric functions.



قيم البحث

اقرأ أيضاً

We study a class of second-order degenerate linear parabolic equations in divergence form in $(-infty, T) times mathbb R^d_+$ with homogeneous Dirichlet boundary condition on $(-infty, T) times partial mathbb R^d_+$, where $mathbb R^d_+ = {x in mathb b R^d,:, x_d>0}$ and $Tin {(-infty, infty]}$ is given. The coefficient matrices of the equations are the product of $mu(x_d)$ and bounded uniformly elliptic matrices, where $mu(x_d)$ behaves like $x_d^alpha$ for some given $alpha in (0,2)$, which are degenerate on the boundary ${x_d=0}$ of the domain. Under a partially VMO assumption on the coefficients, we obtain the wellposedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems.
236 - Lei Wang , Meijun Zhu 2019
In this paper we shall establish some Liouville theorems for solutions bounded from below to certain linear elliptic equations on the upper half space. In particular, we show that for $a in (0, 1)$ constants are the only $C^1$ up to the boundary posi tive solutions to $div(x_n^a abla u)=0$ on the upper half space.
261 - Jingbo Dou , Meijun Zhu 2013
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent $lambda=n-alpha$ (that is for the c ase of $alpha>n$). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequality on the upper half space (which is conformally equivalent to a ball). The existences of extremal functions are obtained; And for certain range of the exponent, we classify all extremal functions via the method of moving sphere.
We study a nonlinear equation in the half-space ${x_1>0}$ with a Hardy potential, specifically [-Delta u -frac{mu}{x_1^2}u+u^p=0quadtext{in}quad mathbb R^n_+,] where $p>1$ and $-infty<mu<1/4$. The admissible boundary behavior of the positive solution s is either $O(x_1^{-2/(p-1)})$ as $x_1to 0$, or is determined by the solutions of the linear problem $-Delta h -frac{mu}{x_1^2}h=0$. In the first part we study in full detail the separable solutions of the linear equations for the whole range of $mu$. In the second part, by means of sub and supersolutions we construct separable solutions of the nonlinear problem which behave like $O(x_1^{-2/(p-1)})$ near the origin and which, away from the origin have exactly the same asymptotic behavior as the separable solutions of the linear problem. In the last part we construct solutions that behave like $O(x_1^{-2/(p-1)})$ at some prescribed parts of the boundary, while at the rest of the boundary the solutions decay or blowup at a slower rate determined by the linear part of the equation.
The existence and multiplicity of solutions for a class of non-local elliptic boundary value problems with superlinear source functions are investigated in this paper. Using variational methods, we examine the changes arise in the solution behaviours as a result of the non-local effect. Comparisons are made of the results here with those of the elliptic boundary value problem in the absence of the non-local term under the same prescribed conditions to highlight this effect of non-locality on the solution behaviours. Our results here demonstrate that the complexity of the solution structures is significantly increased in the presence of the non-local effect with the possibility ranging from no permissible positive solution to three positive solutions and, contrary to those obtained in the absence of the non-local term, the solution profiles also vary depending on the superlinearity of the source functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا