ترغب بنشر مسار تعليمي؟ اضغط هنا

Streaming Adaptive Nonparametric Variational Autoencoder

62   0   0.0 ( 0 )
 نشر من قبل Tingting Zhao
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a data driven approach to perform clustering and end-to-end feature learning simultaneously for streaming data that can adaptively detect novel clusters in emerging data. Our approach, Adaptive Nonparametric Variational Autoencoder (AdapVAE), learns the cluster membership through a Bayesian Nonparametric (BNP) modeling framework with Deep Neural Networks (DNNs) for feature learning. We develop a joint online variational inference algorithm to learn feature representations and clustering assignments simultaneously via iteratively optimizing the Evidence Lower Bound (ELBO). We resolve the catastrophic forgetting citep{kirkpatrick2017overcoming} challenges with streaming data by adopting generative samples from the trained AdapVAE using previous data, which avoids the need of storing and reusing past data. We demonstrate the advantages of our model including adaptive novel cluster detection without discarding useful information learned from past data, high quality sample generation and comparable clustering performance as end-to-end batch mode clustering methods on both image and text corpora benchmark datasets.



قيم البحث

اقرأ أيضاً

300 - Laurence Aitchison 2021
We show that a popular self-supervised learning method, InfoNCE, is a special case of a new family of unsupervised learning methods, the self-supervised variational autoencoder (SSVAE). SSVAEs circumvent the usual VAE requirement to reconstruct the d ata by using a carefully chosen implicit decoder. The InfoNCE objective was motivated as a simplified parametric mutual information estimator. Under one choice of prior, the SSVAE objective (i.e. the ELBO) is exactly equal to the mutual information (up to constants). Under an alternative choice of prior, the SSVAE objective is exactly equal to the simplified parametric mutual information estimator used in InfoNCE (up to constants). Importantly, the use of simplified parametric mutual information estimators is believed to be critical to obtain good high-level representations, and the SSVAE framework naturally provides a principled justification for using prior information to choose these estimators.
We show that unconverged stochastic gradient descent can be interpreted as a procedure that samples from a nonparametric variational approximate posterior distribution. This distribution is implicitly defined as the transformation of an initial distr ibution by a sequence of optimization updates. By tracking the change in entropy over this sequence of transformations during optimization, we form a scalable, unbiased estimate of the variational lower bound on the log marginal likelihood. We can use this bound to optimize hyperparameters instead of using cross-validation. This Bayesian interpretation of SGD suggests improved, overfitting-resistant optimization procedures, and gives a theoretical foundation for popular tricks such as early stopping and ensembling. We investigate the properties of this marginal likelihood estimator on neural network models.
We present the Variational Adaptive Newton (VAN) method which is a black-box optimization method especially suitable for explorative-learning tasks such as active learning and reinforcement learning. Similar to Bayesian methods, VAN estimates a distr ibution that can be used for exploration, but requires computations that are similar to continuous optimization methods. Our theoretical contribution reveals that VAN is a second-order method that unifies existing methods in distinct fields of continuous optimization, variational inference, and evolution strategies. Our experimental results show that VAN performs well on a wide-variety of learning tasks. This work presents a general-purpose explorative-learning method that has the potential to improve learning in areas such as active learning and reinforcement learning.
Variational autoencoders (VAEs) are powerful generative models with the salient ability to perform inference. Here, we introduce a quantum variational autoencoder (QVAE): a VAE whose latent generative process is implemented as a quantum Boltzmann mac hine (QBM). We show that our model can be trained end-to-end by maximizing a well-defined loss-function: a quantum lower-bound to a variational approximation of the log-likelihood. We use quantum Monte Carlo (QMC) simulations to train and evaluate the performance of QVAEs. To achieve the best performance, we first create a VAE platform with discrete latent space generated by a restricted Boltzmann machine (RBM). Our model achieves state-of-the-art performance on the MNIST dataset when compared against similar approaches that only involve discrete variables in the generative process. We consider QVAEs with a smaller number of latent units to be able to perform QMC simulations, which are computationally expensive. We show that QVAEs can be trained effectively in regimes where quantum effects are relevant despite training via the quantum bound. Our findings open the way to the use of quantum computers to train QVAEs to achieve competitive performance for generative models. Placing a QBM in the latent space of a VAE leverages the full potential of current and next-generation quantum computers as sampling devices.
We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model. The benefits and negative of the GP-LVM are complementary to the Va riational Autoencoder, the former provides interpretable low-dimensional latent representations while the latter is able to handle large amounts of data and can use non-Gaussian likelihoods. Our inspiration for this paper is to marry these two approaches and reap the benefits of both. In order to do so we will introduce a novel approximate inference scheme inspired by the GP-LVM and the VAE. We show experimentally that the approximation allows the capacity of the generative bottle-neck (Z) of the VAE to be arbitrarily large without losing a highly interpretable representation, allowing reconstruction quality to be unlimited by Z at the same time as a low-dimensional space can be used to perform ancestral sampling from as well as a means to reason about the embedded data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا