ترغب بنشر مسار تعليمي؟ اضغط هنا

Source Shot Noise Mitigation in Focused Ion Beam Microscopy by Time-Resolved Measurement

414   0   0.0 ( 0 )
 نشر من قبل Minxu Peng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Focused ion beam (FIB) microscopy suffers from source shot noise - random variation in the number of incident ions in any fixed dwell time - along with random variation in the number of detected secondary electrons per incident ion. This multiplicity of sources of randomness increases the variance of the measurements and thus worsens the trade-off between incident ion dose and image accuracy. Time-resolved sensing combined with maximum likelihood estimation from the resulting sets of measurements greatly reduces the effect of source shot noise. Through Fisher information analysis and Monte Carlo simulations, the reduction in mean-squared error or reduction in required dose is shown to be by a factor approximately equal to the secondary electron yield. Experiments with a helium ion microscope (HIM) are consistent with the analyses and suggest accuracy improvement for a fixed source dose, or reduced source dose for a desired imaging accuracy, by a factor of about 3.



قيم البحث

اقرأ أيضاً

Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhi bit device performance. Here we report on direct-write milling of single crystal diamond using a focused beam of oxygen ions. Material quality is assessed by Raman and luminescence analysis, and reveals that the damage layer generated by oxygen ions can be removed by nonintrusive post-processing methods such as localised electron beam induced chemical etching.
The acronym IBIC (Ion Beam Induced Charge) was coined in early 1990s to indicate a scanning microscopy technique which uses MeV ion beams as probes to image the basic electronic properties of semiconductor materials and devices. Since then, IBIC has become a widespread analytical technique to characterize materials for electronics or for radiation detection, as testified by more than 200 papers published so far in peer-reviewed journals. Its success stems from the valuable information IBIC can provide on charge transport phenomena occurring in finished devices, not easily obtainable by other analytical techniques. However, IBIC analysis requires a robust theoretical background to correctly interpret experimental data. In order to illustrate the importance of using a rigorous mathematical formalism, we present in this paper a benchmark IBIC experiment aimed to test the validity of the interpretative model based on the Gunns theorem and to provide an example of the analytical capability of IBIC to characterize semiconductor devices.
In a focused ion beam (FIB) microscope, source particles interact with a small volume of a sample to generate secondary electrons that are detected, pixel by pixel, to produce a micrograph. Randomness of the number of incident particles causes excess variation in the micrograph, beyond the variation in the underlying particle-sample interaction. We recently demonstrated that joint processing of multiple time-resolved measurements from a single pixel can mitigate this effect of source shot noise in helium ion microscopy. This paper is focused on establishing a rigorous framework for understanding the potential for this approach. It introduces idealized continuous- and discrete-time abstractions of FIB microscopy with direct electron detection and estimation-theoretic limits of imaging performance under these measurement models. Novel estimators for use with continuous-time measurements are introduced and analyzed, and estimators for use with discrete-time measurements are analyzed and shown to approach their continuous-time counterparts as time resolution is increased. Simulated FIB microscopy results are consistent with theoretical analyses and demonstrate that substantial improvements over conventional FIB microscopy image formation are made possible by time-resolved measurement.
Using a time-resolved magneto-optical Kerr effect (TR-MOKE) microscope, we observed ultrafast demagnetization of inverse-spinel-type NiCo2O4 (NCO) epitaxial thin films of the inverse spinel type ferrimagnet NCO with perpendicular magnetic anisotropy. This microscope uses a pump-probe method, where the sample is pumped at 1030 nm, and magnetic domain images are acquired via MOKE microscopy at 515 nm (the second harmonic). We successfully observed the dynamics of the magnetic domain of the NCO thin film via laser irradiation, and obtained a demagnetization time constant of approximately 0.4 ps. This time constant was significantly smaller than the large time constants reported for other half-metallic oxides. These results, combined with the results of our x-ray photoemission spectroscopy study, indicate that this NCO thin film is a ferrimagnetic metal whose electronic structure deviates from the theoretically predicted half-metallic one.
A focused ion beam is used to mill side holes in air-silica structured fibres. By way of example, side holes are introduced in two types of air-structured fibres (1) a photonic crystal four-ring fibre and (2) a 6-hole single ring step index structured fibre.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا