ﻻ يوجد ملخص باللغة العربية
We clarify theoretically that the topological ring-cavity (TRC) modes propagating along the interface between two honeycomb-type photonic crystals distinct in topology can be exploited for achieving stable single-mode lasing, with the maximal intensity larger than a whispering-gallery-mode counterpart by order of magnitude. Especially, we show that the TRC modes located at the bulk bandgap center benefit maximally from the gain profile since they are most concentrated and uniform along the ring cavity, and that, inheriting from the Dirac-like dispersion of topological interface states, they are separated in frequency from each other and from other photonic modes, both favoring intrinsically single-mode lasing. A TRC mode running in a specific direction with desired orbital angular momentum can be stimulated selectively by injecting circularly polarized light. The TRC laser proposed in the present work can be fabricated by means of advanced semiconductor nanotechnologies, which generates chiral laser beams ideal for novel photonic functions.
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theorie
Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivit
Over the past decade, topology has garnered great attention in a wide area of physics. In particular, it has exerted influence on photonics because carefully engineered photonic crystals and metamaterials can help explore the non-trivial state of mat
Topological phases of matter have established a new paradigm in physics, bringing quantum phenomena to the macroscopic scale and hosting exotic emergent quasiparticles. In this thesis, I theoretically and experimentally demonstrate with my collaborat
Generating and manipulating Dirac points in artificial atomic crystals has received attention especially in photonic systems due to their ease of implementation. In this paper, we propose a two-dimensional photonic crystal made of a Kekule lattice of