ﻻ يوجد ملخص باللغة العربية
Over the past decade, topology has garnered great attention in a wide area of physics. In particular, it has exerted influence on photonics because carefully engineered photonic crystals and metamaterials can help explore the non-trivial state of materials. In this regard, all dielectric metamaterials with large anisotropy, and dipole and multipole Mie resonators have played an increasingly important role in topological photonics. Advantages of Mie resonators make it possible to quest for non-trivial states in three dimensions and theoretical calculation supports its potential. However, it is very difficult to demonstrate this experimentally because it is hard to make the metacrystal by anisotropic meta-atoms despite much effort. Here we report a Dirac metamaterial for 3D topological photonics. It is implemented by a metacrystal self-assembled by a molecule, HYLION-12 which has both anisotropic polarizability and ring current. As its peculiar properties, it has an exotic optical constant that can be used for the electric and magnetic hyperbolic metamaterial, and the double hyperbolic metamaterial in the ultraviolet region. It also showed 142% of reflectance at 242nm as an amplified reflector and asymmetric transmittance up to 30% through the opaque substrate as a Huygens source under 300nm. Furthermore, it demonstrated various phenomena of topological photonics such as Pancharatnam-Berry and waveguide phase merging, wavefront shaping and waveguide on edges as a 3D topological photonic material. The new strategy using polyaromatic hydrocarbons (PAHs) is expected to be an effective way to realize 3D topological photonics.
Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in material science and condensed matter physics. It has emerged as a major focus for industry and regulatory agencies re
Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material
We propose an approach to engineer quartic metamaterials starting from the desired photonic states. We apply our method to the design of the high-k asymptotics of metamaterials, extreme non-reciprocity and complex bi-anisotropic media.
The optical properties of some nanomaterials can be controlled by an external magnetic field, providing active functionalities for a wide range of applications, from single-molecule sensing to nanoscale nonreciprocal optical isolation. Materials with
Topological photonics has emerged as a novel route to engineer the flow of light. Topologically-protected photonic edge modes, which are supported at the perimeters of topologically-nontrivial insulating bulk structures, have been of particular inter