ﻻ يوجد ملخص باللغة العربية
Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment or outcome. We first consider non-differential measurement errors, that is, the mis-measured variable does not depend on other variables given its true value. We show that the measurement error of the instrumental variable does not bias the estimate, the measurement error of the treatment biases the estimate away from zero, and the measurement error of the outcome biases the estimate toward zero. Moreover, we derive sharp bounds on the causal effects without additional assumptions. These bounds are informative because they exclude zero. We then consider differential measurement errors, and focus on sensitivity analyses in those settings.
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifia
Instrumental variables (IV) are a useful tool for estimating causal effects in the presence of unmeasured confounding. IV methods are well developed for uncensored outcomes, particularly for structural linear equation models, where simple two-stage e
This paper considers the instrumental variable quantile regression model (Chernozhukov and Hansen, 2005, 2013) with a binary endogenous treatment. It offers two identification results when the treatment status is not directly observed. The first resu
The primary analysis of randomized screening trials for cancer typically adheres to the intention-to-screen principle, measuring cancer-specific mortality reductions between screening and control arms. These mortality reductions result from a combina
Two-stage least squares (TSLS) estimators and variants thereof are widely used to infer the effect of an exposure on an outcome using instrumental variables (IVs). They belong to a wider class of two-stage IV estimators, which are based on fitting a