ترغب بنشر مسار تعليمي؟ اضغط هنا

Introduction of water-vapor broadening coefficients and their temperature dependence exponents into the HITRAN database, Part I: CO2, N2O, CO, CH4, O2, NH3, and H2S

122   0   0.0 ( 0 )
 نشر من قبل Iouli Gordon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The amount of water vapor in the terrestrial atmosphere is highly variable both spatially and temporally. In the tropics it sometimes constitutes 4-5% of the atmosphere. At the same time collisional broadening of spectral lines by water vapor is much larger than that by nitrogen and oxygen. Therefore, in order to accurately characterize and model spectra of the atmospheres with significant amounts of water vapor, the line-shape parameters for spectral lines broadened by water vapor are required. In this work, the line-broadening coefficients (and their temperature dependence exponents) due to the pressure of water vapor for lines of CO2, N2O, CO, CH4, O2, NH3, and H2S from both experimental and theoretical studies were collected and carefully reviewed. A set of semi-empirical models based on these collected data was created and then used to estimate water broadening and its temperature dependence for all transitions of selected molecules in the HITRAN2016 database.

قيم البحث

اقرأ أيضاً

Environmental research aimed at monitoring and predicting O2 depletion is still lacking or in need of improvement, in spite of many attempts to find a relation between atmospheric gas content and climate variability. The aim of the present project is to determine accurate historical sequences of the atmospheric O2 depletion by using the telluric lines present in stellar spectra. A better understanding of the role of oxygen in atmospheric thermal equilibrium may become possible if high-resolution spectroscopic observations are carried out for different airmasses, in different seasons, for different places, and if variations are monitored year by year. The astronomical spectroscopic technique involves mainly the investigation of the absorption features in high-resolution stellar spectra, but we are also considering whether accurate measures of the atmospheric O2 abundances can be obtained from medium and low resolution stellar spectra.
The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments ex ploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.
142 - C. Fischer 2021
We report on the measurements of telluric water vapor made with the instrument FIFI-LS on SOFIA. Since November 2018, FIFI-LS has measured the water vapor overburden with the same measurement setup on each science flight with about 10 data points thr oughout the flight. This created a large sample of 469 measurements at different locations, flight altitudes and seasons. The paper describes the measurement principle in detail and provides some trend analysis on the 3 parameters. This presents the first systematic analysis with SOFIA based on in situ observations.
91 - Geoffrey K. Vallis 2020
This article discussesl a few of the problems that arise in geophysical fluid dynamics and climate that are associated with the presence of moisture in the air, its condensation and release of latent heat. Our main focus is Earths atmosphere but we a lso discuss how these problems might manifest themselves on other planetary bodies, with particular attention to Titan where methane takes on the role of water. GFD has traditionally been concerned with understanding the very basic problems that lie at the foundation of dynamical meteorology and ocean-ography. Conventionally, and a little ironically, the subject mainly considers `dry fluids, meaning it does not concern itself overly much with phase changes. The subject is often regarded as dry in another way, because it does not consider problems perceived as relevant to the real world, such as clouds or rainfall, which have typically been the province of complicated numerical models. Those models often rely on parameterizations of unresolved processes, parameterizations that may work very well but that often have a semi-empirical basis. The consequent dichotomy between the foundations and the applications prevents progress being made that has both a secure basis in scientific understanding and a relevance to the Earths climate, especially where moisture is concerned. The dichotomy also inhibits progress in understanding the climate of other planets, where observations are insufficient to tune the parameterizations that weather and climate models for Earth rely upon, and a more fundamental approach is called for. Here we discuss four diverse examples of the problems with moisture: the determination of relative humidity and cloudiness; the transport of water vapor and its possible change under global warming; the moist shallow water equations and the Madden-Julian Oscillation; and the hydrology cycle on other planetary bodies.
We propose a classification of exoplanet atmospheres based on their H, C, O, N element abundances below about 600 K. Chemical equilibrium models were run for all combinations of H, C, N, O abundances, and three types of solutions were found, which ar e robust against variations of temperature, pressure and nitrogen abundance. Type A atmospheres contain H2O, CH4, NH3 and either H2 or N2, but only traces of CO2 and O2. Type B atmospheres contain O2, H2O, CO2 and N2, but only traces of CH4, NH3 and H2. Type C atmospheres contain H2O, CO2, CH4 and N2, but only traces of NH3, H2 and O2. Other molecules are only present in ppb or ppm concentrations in chemical equilibrium, depending on temperature. Type C atmospheres are not found in the solar system, where atmospheres are generally cold enough for water to condense, but exoplanets may well host such atmospheres. Our models show that graphite (soot) clouds can occur in type C atmospheres in addition to water clouds, which can occur in all types of atmospheres. Full equilibrium condensation models show that the outgassing from warm rock can naturally provide type C atmospheres. We conclude that type C atmospheres, if they exist, would lead to false positive detections of biosignatures in exoplanets when considering the coexistence of CH4 and CO2, and suggest other, more robust non-equilibrium markers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا