ﻻ يوجد ملخص باللغة العربية
Many real world vision tasks, such as reflection removal from a transparent surface and intrinsic image decomposition, can be modeled as single image layer separation. However, this problem is highly ill-posed, requiring accurately aligned and hard to collect triplet data to train the CNN models. To address this problem, this paper proposes an unsupervised method that requires no ground truth data triplet in training. At the core of the method are two assumptions about data distributions in the latent spaces of different layers, based on which a novel unsupervised layer separation pipeline can be derived. Then the method can be constructed based on the GANs framework with self-supervision and cycle consistency constraints, etc. Experimental results demonstrate its successfulness in outperforming existing unsupervised methods in both synthetic and real world tasks. The method also shows its ability to solve a more challenging multi-layer separation task.
Image-to-Image (I2I) multi-domain translation models are usually evaluated also using the quality of their semantic interpolation results. However, state-of-the-art models frequently show abrupt changes in the image appearance during interpolation, a
Single image reflection separation is an ill-posed problem since two scenes, a transmitted scene and a reflected scene, need to be inferred from a single observation. To make the problem tractable, in this work we assume that categories of two scenes
We propose a framework for aligning and fusing multiple images into a single coordinate-based neural representations. Our framework targets burst images that have misalignment due to camera ego motion and small changes in the scene. We describe diffe
Facial attributes in StyleGAN generated images are entangled in the latent space which makes it very difficult to independently control a specific attribute without affecting the others. Supervised attribute editing requires annotated training data w
Intrinsic image decomposition, which is an essential task in computer vision, aims to infer the reflectance and shading of the scene. It is challenging since it needs to separate one image into two components. To tackle this, conventional methods int