ﻻ يوجد ملخص باللغة العربية
Single image reflection separation is an ill-posed problem since two scenes, a transmitted scene and a reflected scene, need to be inferred from a single observation. To make the problem tractable, in this work we assume that categories of two scenes are known. It allows us to address the problem by generating both scenes that belong to the categories while their contents are constrained to match with the observed image. A novel network architecture is proposed to render realistic images of both scenes based on adversarial learning. The network can be trained in a weakly supervised manner, i.e., it learns to separate an observed image without corresponding ground truth images of transmission and reflection scenes which are difficult to collect in practice. Experimental results on real and synthetic datasets demonstrate that the proposed algorithm performs favorably against existing methods.
Reflection is common in images capturing scenes behind a glass window, which is not only a disturbance visually but also influence the performance of other computer vision algorithms. Single image reflection removal is an ill-posed problem because th
This paper proposes a novel location-aware deep-learning-based single image reflection removal method. Our network has a reflection detection module to regress a probabilistic reflection confidence map, taking multi-scale Laplacian features as inputs
Despite significant advances in image-to-image (I2I) translation with Generative Adversarial Networks (GANs) have been made, it remains challenging to effectively translate an image to a set of diverse images in multiple target domains using a pair o
Many real world vision tasks, such as reflection removal from a transparent surface and intrinsic image decomposition, can be modeled as single image layer separation. However, this problem is highly ill-posed, requiring accurately aligned and hard t
In most interactive image generation tasks, given regions of interest (ROI) by users, the generated results are expected to have adequate diversities in appearance while maintaining correct and reasonable structures in original images. Such tasks bec