ترغب بنشر مسار تعليمي؟ اضغط هنا

Noether Converse: all identically conserved geometric tensors are metric variations of an action in (at least) D = 2

38   0   0.0 ( 0 )
 نشر من قبل Stanley Deser
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.Deser




اسأل ChatGPT حول البحث

The titles century-old conjecture is established fpr D=2 and is likely for all D.



قيم البحث

اقرأ أيضاً

Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fi xed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.
The quantum effective action yields equations of motion and correlation functions including all quantum corrections. We discuss here how it encodes also Noether currents at the full quantum level. This holds both for covariantly conserved currents as sociated to real symmetries that leave the action invariant as well as for non-conserved Noether currents associated to extended symmetry transformations which change the action, but in a specific way. We discuss then in particular symmetries and extended symmetries associated to space-time geometry for relativistic quantum field theories. These encompass local dilatations or Weyl gauge transformation, local Lorentz transformations and local shear transformations. Together they constitute the symmetry group of the frame bundle GL$(d)$. The corresponding non-conserved Noether currents are the dilatation or Weyl current, the spin current and the shear current for which divergence-type equations of motion are obtained from the quantum effective action.
127 - Damianos Iosifidis 2018
This article presents a systematic way to solve for the Affine Connection in Metric-Affine Geometry. We start by adding to the Einstein-Hilbert action, a general action that is linear in the connection and its partial derivatives and respects project ive invariance. We then generalize the result for Metric-Affine f(R) Theories. Finally, we generalize even further and add an action (to the Einstein-Hilbert) that has an arbitrary dependence on the connection and its partial derivatives. We wrap up our results as three consecutive Theorems. We then apply our Theorems to some simple examples in order to illustrate how the procedure works and also discuss the cases of dynamical/non-dynamical connections.
The recently proposed regularized Lovelock tensors are kinetically coupled to the scalar field. The resulting equation of motion is second order. In particular, it is found that when the $p=3$ regularized Lovelock tensor is kinetically coupled to the scalar field, the scalar field is the potential candidate of cosmic dark energy.
We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions mad e, this conformally invariant wave operator is unique. The corresponding conformally invariant wave equation can be obtained from a Lagrangian which is explicitly given. We discuss how our result compares to previous works, in particular we hope to clarify the situation between conflicting results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا