ترغب بنشر مسار تعليمي؟ اضغط هنا

Fisher Metric, Geometric Entanglement and Spin Networks

41   0   0.0 ( 0 )
 نشر من قبل Fabio M. Mele
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.



قيم البحث

اقرأ أيضاً

95 - G. Menezes 2017
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of i nterest. We employ the quantum master equation in the Born-Markov approximation in order to describe the time evolution of the atomic subsystem. We investigate two different states of motion for the atoms, namely static atoms and also stationary atoms with zero angular momentum. The purpose of this work is to expound the impact on the creation of entanglement coming from the combined action of the different physical processes underlying the Hawking effect and the Unruh-Starobinskii effect. We demonstrate that, in the scenario of rotating black holes, the degree of quantum entanglement is significantly modified due to the phenomenon of superradiance in comparison with the analogous cases in a Schwarzschild spacetime. In the perspective of a zero angular momentum observer (ZAMO), one is allowed to probe entanglement dynamics inside the ergosphere, since static observers cannot exist within such a region. On the other hand, the presence of superradiant modes could be a source for violation of complete positivity. This is verified when the quantum field is prepared in the Frolov-Thorne vacuum state. In this exceptional situation, we raise the possibility that the loss of complete positivity is due to the breakdown of the Markovian approximation, which means that any arbitrary physically admissible initial state of the two atoms would not be capable to hold, with time evolution, its interpretation as a physical state inasmuch as negative probabilities are generated by the dynamical map.
113 - Saurya Das 2008
We review aspects of the thermodynamics of black holes and in particular take into account the fact that the quantum entanglement between the degrees of freedom of a scalar field, traced inside the event horizon, can be the origin of black hole entro py. The main reason behind such a plausibility is that the well-known Bekenstein-Hawking entropy-area proportionality -- the so-called `area law of black hole physics -- holds for entanglement entropy as well, provided the scalar field is in its ground state, or in other minimum uncertainty states, such as a generic coherent state or squeezed state. However, when the field is either in an excited state or in a state which is a superposition of ground and excited states, a power-law correction to the area law is shown to exist. Such a correction term falls off with increasing area, so that eventually the area law is recovered for large enough horizon area. On ascertaining the location of the microscopic degrees of freedom that lead to the entanglement entropy of black holes, it is found that although the degrees of freedom close to the horizon contribute most to the total entropy, the contributions from those that are far from the horizon are more significant for excited/superposed states than for the ground state. Thus, the deviations from the area law for excited/superposed states may, in a way, be attributed to the far-away degrees of freedom. Finally, taking the scalar field (which is traced over) to be massive, we explore the changes on the area law due to the mass. Although most of our computations are done in flat space-time with a hypothetical spherical region, considered to be the analogue of the horizon, we show that our results hold as well in curved space-times representing static asymptotically flat spherical black holes with single horizon.
161 - Taotao Li , Baocheng Zhang , 2018
We study the anti-Unruh effect for an entangled quantum state in reference to the counterintuitive cooling previously pointed out for an accelerated detector coupled to the vacuum. We show that quantum entanglement for an initially entangled (spaceli ke separated) bipartite state can be increased when either a detector attached to one particle is accelerated or both detectors attached to the two particles are in simultaneous accelerations. However, if the two particles (e.g., detectors for the bipartite system) are not initially entangled, entanglement cannot be created by the anti-Unruh effect. Thus, within certain parameter regime, this work shows that the anti-Unruh effect can be viewed as an amplification mechanism for quantum entanglement.
We study, in the framework of open quantum systems, the entanglement dynamics for a quantum system composed of two uniformly accelerated Unruh-Dewitt detectors interacting with a bath of massive scalar fields in the Minkowski vacuum. We find that the entanglement evolution for the quantum system coupled with massive fields is always slower compared with that of the one coupled with massless fields, and this time-delay effect brought by the field being massive can however be counteracted by a large enough acceleration, in contrast to the case of a static quantum system in a thermal bath, where this time delay is not affected by the temperature. Remarkably, the maximal concurrence of the quantum system generated during evolution may increase with acceleration for any inter-detector separation while that for static ones in a thermal bath decreases monotonically with temperature, and this can be considered as an anti-Unruh effect in terms of the entanglement generated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا