ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the Star-Disk-Jet Connection in GM Aur using Multiwavelength Variability

214   0   0.0 ( 0 )
 نشر من قبل Catherine Espaillat
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we analyze the first simultaneous X-ray, ultraviolet, optical, infrared, and centimeter observations of a T Tauri star (TTS). We present three epochs of simultaneous Spitzer and VLA data of GM Aur separated by ~1 wk. These data are compared to previously published HST and Chandra observations from which mass accretion rates ($dot M$) and X-ray luminosities, respectively, were measured. The mid-infrared emission increases along with $dot M$, and we conclude that this is due to an increase in the mass in the inner disk. The cm emission, which probes the jet, also appears to increase as $dot M$ increases, and the changes in the cm flux are consistent with the variability in $dot M$ assuming the mass-loss rate is ~10% $dot M$. The 3 cm emission morphology also appears changed compared with observations taken three years previously, suggesting that for the first time, we may be tracking changes in the jet morphology of a TTS. The X-ray luminosity is constant throughout the three epochs, ruling out variable high-energy stellar radiation as the cause for the increases in the mid-infrared or cm emission. Tying together the multiwavelength variability observed, we conclude that an increase in the surface density in the inner disk resulted in more mass loading onto the star and therefore a higher $dot M$, which led to a higher mass-loss rate in the jet. These results stress the importance of coordinated multiwavelength work to better understand the star-disk-jet connection.



قيم البحث

اقرأ أيضاً

We analyze 3 epochs of ultraviolet (UV), optical and near-infrared (NIR) observations of the Taurus transitional disk GM Aur using the Hubble Space Telescope Imaging Spectrograph (STIS) and the Infrared Telescope Facility SpeX spectrograph. Observati ons were separated by one week and 3 months in order to study variability over multiple timescales. We calculate accretion rates for each epoch of observations using the STIS spectra and find that those separated by one week had similar accretion rates (~1E-8 solar masses/yr) while the epoch obtained 3 months later had a substantially lower accretion rate (~4E-9 solar masses/yr). We find that the decline in accretion rate is caused by lower densities of material in the accretion flows, as opposed to a lower surface coverage of the accretion columns. During the low accretion rate epoch we also observe lower fluxes at both far UV (FUV) and IR wavelengths, which trace molecular gas and dust in the disk, respectively. We find that this can be explained by a lower dust and gas mass in the inner disk. We attribute the observed variability to inhomogeneities in the inner disk, near the corotation radius, where gas and dust may co-exist near the footprints of the magnetospheric flows. These FUV--NIR data offer a new perspective on the structure of the inner disk, the stellar magnetosphere, and their interaction.
We have imaged GM Aur with HST, detected its disk in scattered light at 1400A and 1650A, and compared these with observations at 3300A, 5550A, 1.1 microns, and 1.6 microns. The scattered light increases at shorter wavelengths. The radial surface brig htness profile at 3300A shows no evidence of the 24AU radius cavity that has been previously observed in sub-mm observations. Comparison with dust grain opacity models indicates the surface of the entire disk is populated with sub-micron grains. We have compiled an SED from 0.1 microns to 1 mm, and used it to constrain a model of the star+disk system that includes the sub-mm cavity using the Monte Carlo Radiative Transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of sub-microns grains interior to the sub-mm cavity wall. We suggest one explanation for this which could be due to a planet of mass <9 Jupiter masses interior to 24 AU. A unique cylindrical structure is detected in the FUV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semi-minor axis, but does not resemble an accretion-driven jet. The structure is limb-brightened and extends 190 +/- 35 AU above the disk midplane. The inner radius of the limb-brightening is 40 +/- 10 AU, just beyond the sub-millimeter cavity wall.
We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2-m Tel escope and HiCIAO. An angular resolution and an inner working angle of 0.07 and r~0.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/-2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M_Jup planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk.
Results from UBVRI photometric observations of the pre-main sequence star GM Cep obtained in the period April 2011 - August 2014 are reported in the paper. Presented data are a continuation of our photometric monitoring of the star started in 2008. G M Cep is located in the field of the young open cluster Trumpler 37 and over the past years it has been an object of intense photometric and spectral studies. The star shows a strong photometric variability interpreted as a possible outburst from EXor type in previous studies. Our photometric data for a period of over six years show a large amplitude variability (Delta V ~ 2.3 mag.) and several deep minimums in brightness are observed. The analysis of the collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. The observed decreases in brightness have a different shape, and evidences of periodicity are not detected. At the same time, high amplitude rapid variations in brightness typical for the classical T Tauri stars also present on the light curve of GM Cep. The spectrum of GM Cep shows the typical of classical T Tauri stars wide H/alpha emission line and absorption lines of some metals. We calculate the outer radius of the H/alpha emitting region as 10.4 +/-0.5 Rsun and the accretion rate as 1.8 x 10 E-7 Msun/yr.
The protoplanetary disk around the T Tauri star GM Aur was one of the first hypothesized to be in the midst of being cleared out by a forming planet. As a result, GM Aur has had an outsized influence on our understanding of disk structure and evoluti on. We present 1.1 and 2.1 mm ALMA continuum observations of the GM Aur disk at a resolution of ~50 mas (~8 au), as well as HCO$^+$ $J=3-2$ observations at a resolution of ~100 mas. The dust continuum shows at least three rings atop faint, extended emission. Unresolved emission is detected at the center of the disk cavity at both wavelengths, likely due to a combination of dust and free-free emission. Compared to the 1.1 mm image, the 2.1 mm image shows a more pronounced shoulder near R~40 au, highlighting the utility of longer-wavelength observations for characterizing disk substructures. The spectral index $alpha$ features strong radial variations, with minima near the emission peaks and maxima near the gaps. While low spectral indices have often been ascribed to grain growth and dust trapping, the optical depth of GM Aurs inner two emission rings renders their dust properties ambiguous. The gaps and outer disk ($R>100$ au) are optically thin at both wavelengths. Meanwhile, the HCO$^+$ emission indicates that the gas cavity is more compact than the dust cavity traced by the millimeter continuum, similar to other disks traditionally classified as transitional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا