ترغب بنشر مسار تعليمي؟ اضغط هنا

A Resolved Near-Infrared Image of The Inner Cavity in The GM Aur Transitional Disk

233   0   0.0 ( 0 )
 نشر من قبل Daehyeon Oh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2-m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.07 and r~0.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/-2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M_Jup planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk.



قيم البحث

اقرأ أيضاً

We have imaged GM Aur with HST, detected its disk in scattered light at 1400A and 1650A, and compared these with observations at 3300A, 5550A, 1.1 microns, and 1.6 microns. The scattered light increases at shorter wavelengths. The radial surface brig htness profile at 3300A shows no evidence of the 24AU radius cavity that has been previously observed in sub-mm observations. Comparison with dust grain opacity models indicates the surface of the entire disk is populated with sub-micron grains. We have compiled an SED from 0.1 microns to 1 mm, and used it to constrain a model of the star+disk system that includes the sub-mm cavity using the Monte Carlo Radiative Transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of sub-microns grains interior to the sub-mm cavity wall. We suggest one explanation for this which could be due to a planet of mass <9 Jupiter masses interior to 24 AU. A unique cylindrical structure is detected in the FUV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semi-minor axis, but does not resemble an accretion-driven jet. The structure is limb-brightened and extends 190 +/- 35 AU above the disk midplane. The inner radius of the limb-brightening is 40 +/- 10 AU, just beyond the sub-millimeter cavity wall.
We analyze 3 epochs of ultraviolet (UV), optical and near-infrared (NIR) observations of the Taurus transitional disk GM Aur using the Hubble Space Telescope Imaging Spectrograph (STIS) and the Infrared Telescope Facility SpeX spectrograph. Observati ons were separated by one week and 3 months in order to study variability over multiple timescales. We calculate accretion rates for each epoch of observations using the STIS spectra and find that those separated by one week had similar accretion rates (~1E-8 solar masses/yr) while the epoch obtained 3 months later had a substantially lower accretion rate (~4E-9 solar masses/yr). We find that the decline in accretion rate is caused by lower densities of material in the accretion flows, as opposed to a lower surface coverage of the accretion columns. During the low accretion rate epoch we also observe lower fluxes at both far UV (FUV) and IR wavelengths, which trace molecular gas and dust in the disk, respectively. We find that this can be explained by a lower dust and gas mass in the inner disk. We attribute the observed variability to inhomogeneities in the inner disk, near the corotation radius, where gas and dust may co-exist near the footprints of the magnetospheric flows. These FUV--NIR data offer a new perspective on the structure of the inner disk, the stellar magnetosphere, and their interaction.
Our understanding of protoplanetary disks is rapidly departing from the classical view of a smooth, axisymmetric disk. This is in part thanks to the high angular resolution that (sub)mm observations can provide. Here we present the combined results o f ALMA (0.9 mm) and VLA (7 mm) dust continuum observations toward the protoplanetary disk around the solar analogue GM Aur. Both images clearly resolve the $sim$35 au inner cavity. The ALMA observations also reveal a fainter disk that extends up to $sim250$ au. We model our observations using two approaches: an analytical fit to the observed deprojected visibilities, and a physical disk model that fits the SED as well as the VLA and ALMA observations. Despite not being evident in the deconvolved images, the VLA and ALMA visibilities can only be fitted with two bright rings of radii $sim$40 and $sim$80 au. Our physical model indicates that this morphology is the result of an accumulation or trapping of large dust grains, probably due to the presence of two pressure bumps in the disk. Even though alternative mechanisms cannot be discarded, the multiple rings suggest that forming planets may have cleared at least two gaps in the disk. Finally, our analysis suggests that the inner cavity might display different sizes at 0.9 mm and 7 mm. This discrepancy could be caused by the presence of free-free emission close to the star at 7 mm, or by a more compact accumulation of the large dust grains at the edge of the cavity.
RW Aur is a young binary system showing strong signatures of a recent tidal encounter between the circumprimary disk and the secondary star. The primary star has recently undergone two major dimming events ($Delta$mag $approx$ 2 in V-band), whose ori gin is still under debate. To shed light on the mechanism leading to the dimming events, we study the extinction properties, accretion variability, and gas kinematics using absorption lines from the material obscuring star RW Aur A. We compare our moderate resolution X-Shooter spectra of the dim state of RW Aur A with other spectral observations. In particular, we analyse archival high resolution UVES spectra obtained during the bright state of the system, in order to track the evolution of the spectral properties across the second dimming event. The spectrum obtained during the dim state shows narrow absorption lines in the Na and K optical doublets, where the former is saturated. With a velocity of -60 km/s these lines indicate that during the dim state the disk wind is either enhanced, or significantly displaced into the line of sight. The photometric evolution across the dimming event shows a gray extinction, and is correlated with a significant reduction of the EW of all photospheric lines. Emission lines tracing accretion do not vary significantly across the dimming. We conclude that the dimming event is related to a major perturbation on the inner disk. We suggest that the inner disk is occulting (most of) the star, and thus its photosphere, but is not occulting the accretion regions within a few stellar radii. Since observations of the outer disk indicate that the disk is modestly inclined (45 - 60 deg), we propose that the inner disk might be warped by a yet unseen (sub-)stellar companion, which may also explain the 2.77 day periodic variability of the spectral lines.
We present high resolution H-band polarized intensity (PI; FWHM = 0.1: 14 AU) and L-band imaging data (FWHM = 0.11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.2) up to 210 AU (1.5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is ~70 AU. Our data show that the geometric center of the disk shifts by ~6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L-band imaging data, we put an upper limit mass of companions at ~30 to ~50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا