ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations

53   0   0.0 ( 0 )
 نشر من قبل Niccol\\`o Dalmasso
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex phenomena in engineering and the sciences are often modeled with computationally intensive feed-forward simulations for which a tractable analytic likelihood does not exist. In these cases, it is sometimes necessary to estimate an approximate likelihood or fit a fast emulator model for efficient statistical inference; such surrogate models include Gaussian synthetic likelihoods and more recently neural density estimators such as autoregressive models and normalizing flows. To date, however, there is no consistent way of quantifying the quality of such a fit. Here we propose a statistical framework that can distinguish any arbitrary misspecified model from the target likelihood, and that in addition can identify with statistical confidence the regions of parameter as well as feature space where the fit is inadequate. Our validation method applies to settings where simulations are extremely costly and generated in batches or ensembles at fixed locations in parameter space. At the heart of our approach is a two-sample test that quantifies the quality of the fit at fixed parameter values, and a global test that assesses goodness-of-fit across simulation parameters. While our general framework can incorporate any test statistic or distance metric, we specifically argue for a new two-sample test that can leverage any regression method to attain high power and provide diagnostics in complex data settings.



قيم البحث

اقرأ أيضاً

126 - Long Feng , Lee H. Dicker 2016
Nonparametric maximum likelihood (NPML) for mixture models is a technique for estimating mixing distributions that has a long and rich history in statistics going back to the 1950s, and is closely related to empirical Bayes methods. Historically, NPM L-based methods have been considered to be relatively impractical because of computational and theoretical obstacles. However, recent work focusing on approximate NPML methods suggests that these methods may have great promise for a variety of modern applications. Building on this recent work, a class of flexible, scalable, and easy to implement approximate NPML methods is studied for problems with multivariate mixing distributions. Concrete guidance on implementing these methods is provided, with theoretical and empirical support; topics covered include identifying the support set of the mixing distribution, and comparing algorithms (across a variety of metrics) for solving the simple convex optimization problem at the core of the approximate NPML problem. Additionally, three diverse real data applications are studied to illustrate the methods performance: (i) A baseball data analysis (a classical example for empirical Bayes methods), (ii) high-dimensional microarray classification, and (iii) online prediction of blood-glucose density for diabetes patients. Among other things, the empirical results demonstrate the relative effectiveness of using multivariate (as opposed to univariate) mixing distributions for NPML-based approaches.
Temporal Point Processes (TPP) with partial likelihoods involving a latent structure often entail an intractable marginalization, thus making inference hard. We propose a novel approach to Maximum Likelihood Estimation (MLE) involving approximate inf erence over the latent variables by minimizing a tight upper bound on the approximation gap. Given a discrete latent variable $Z$, the proposed approximation reduces inference complexity from $O(|Z|^c)$ to $O(|Z|)$. We use convex conjugates to determine this upper bound in a closed form and show that its addition to the optimization objective results in improved results for models assuming proportional hazards as in Survival Analysis.
We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appeal ing theoretical properties, but is difficult to compute exactly. Inspired by observations gleaned from exactly solvable cases, we look for an approximate PML solution, which, intuitively, clumps comparably frequent symbols into one symbol. This amounts to lower-bounding a certain matrix permanent by summing over a subgroup of the symmetric group rather than the whole group during the computation. We extensively experiment with the approximate solution, and find the empirical performance of our approach is competitive and sometimes significantly better than state-of-the-art performance for various estimation problems.
Approximate Bayesian Computation (ABC) is typically used when the likelihood is either unavailable or intractable but where data can be simulated under different parameter settings using a forward model. Despite the recent interest in ABC, high-dimen sional data and costly simulations still remain a bottleneck in some applications. There is also no consensus as to how to best assess the performance of such methods without knowing the true posterior. We show how a nonparametric conditional density estimation (CDE) framework, which we refer to as ABC-CDE, help address three nontrivial challenges in ABC: (i) how to efficiently estimate the posterior distribution with limited simulations and different types of data, (ii) how to tune and compare the performance of ABC and related methods in estimating the posterior itself, rather than just certain properties of the density, and (iii) how to efficiently choose among a large set of summary statistics based on a CDE surrogate loss. We provide theoretical and empirical evidence that justify ABC-CDE procedures that {em directly} estimate and assess the posterior based on an initial ABC sample, and we describe settings where standard ABC and regression-based approaches are inadequate.
307 - Liang Ding , Xiaowei Zhang 2020
Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of a complex simulation model. However, its use is limited to cases where the design space is low-dimensional, because the number of design points required for stochastic kriging to produce accurate prediction, in general, grows exponentially in the dimension of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need of inverting large covariance matrices. Based on tensor Markov kernels and sparse grid experimental designs, we develop a novel methodology that dramatically alleviates the curse of dimensionality. We show that the sample complexity of the proposed methodology grows very mildly in the dimension, even under model misspecification. We also develop fast algorithms that compute stochastic kriging in its exact form without any approximation schemes. We demonstrate via extensive numerical experiments that our methodology can handle problems with a design space of more than 10,000 dimensions, improving both prediction accuracy and computational efficiency by orders of magnitude relative to typical alternative methods in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا