ﻻ يوجد ملخص باللغة العربية
Studies of the ages, abundances, and motions of individual stars in the Milky Way provide one of the best ways to study the evolution of disk galaxies over cosmic time. The formation of the Milky Ways barred inner region in particular is a crucial piece of the puzzle of disk galaxy evolution. Using data from APOGEE and Gaia, we present maps of the kinematics, elemental abundances, and age of the Milky Way bulge and disk that show the barred structure of the inner Milky Way in unprecedented detail. The kinematic maps allow a direct, purely kinematic determination of the bars pattern speed of 41+/-3 km/s/kpc and of its shape and radial profile. We find the bars age, metallicity, and abundance ratios to be the same as those of the oldest stars in the disk that are formed in its turbulent beginnings, while stars in the bulge outside of the bar are younger and more metal-rich. This implies that the bar likely formed ~8 Gyr ago, when the decrease in turbulence in the gas disk allowed a thin disk to form that quickly became bar-unstable. The bars formation therefore stands as a crucial epoch in the evolution of the Milky Way, a picture that is in line with the evolutionary path that emerges from observations of the gas kinematics in external disk galaxies over the last ~10 Gyr.
We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1,pc from Sgr,A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest
Numerous studies of integrated starlight, stellar counts, and kinematics have confirmed that the Milky Way is a barred galaxy. However, far fewer studies have investigated the bars stellar population properties, which carry valuable independent infor
The predicted abundance and properties of the low-mass substructures embedded inside larger dark matter haloes differ sharply among alternative dark matter models. Too small to host galaxies themselves, these subhaloes may still be detected via gravi
We study the evolution of oxygen abundance radial gradients as a function of time for the Milky Way Galaxy obtained with our {sc Mulchem} chemical evolution model. We review the recent data of abundances for different objects observed in our Galactic
We analyse the chemical properties of a set of solar vicinity stars, and show that the small dispersion in abundances of alpha-elements at all ages provides evidence that the SFH has been uniform throughout the thick disk. In the context of long time