ترغب بنشر مسار تعليمي؟ اضغط هنا

Shaken and Stirred: The Milky Ways Dark Substructures

99   0   0.0 ( 0 )
 نشر من قبل Till Sawala
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Till Sawala




اسأل ChatGPT حول البحث

The predicted abundance and properties of the low-mass substructures embedded inside larger dark matter haloes differ sharply among alternative dark matter models. Too small to host galaxies themselves, these subhaloes may still be detected via gravitational lensing, or via perturbations of the Milky Ways globular cluster streams and its stellar disk. Here we use the Apostle cosmological simulations to predict the abundance and the spatial and velocity distributions of subhaloes in the range 10^6.5-10^8.5 solar masses inside haloes of mass ~ 10^12 solar masses in LCDM. Although these subhaloes are themselves devoid of baryons, we find that baryonic effects are important. Compared to corresponding dark matter only simulations, the loss of baryons from subhaloes and stronger tidal disruption due to the presence of baryons near the centre of the main halo, reduce the number of subhaloes by ~ 1/4 to 1/2, independently of subhalo mass, but increasingly towards the host halo centre. We also find that subhaloes have non-Maxwellian orbital velocity distributions, with centrally rising velocity anisotropy and positive velocity bias which reduces the number of low-velocity subhaloes, particularly near the halo centre. We parameterise the predicted population of subhaloes in terms of mass, galactocentric distance, and velocities. We discuss implications of our results for the prospects of detecting dark matter substructures and for possible inferences about the nature of dark matter.



قيم البحث

اقرأ أيضاً

Cold Dark Matter (CDM) theory, a pillar of modern cosmology and astrophysics, predicts the existence of a large number of starless dark matter halos surrounding the Milky Way (MW). However, clear observational evidence of these dark substructures rem ains elusive. Here, we present a detection method based on the small, but detectable, velocity changes that an orbiting substructure imposes on the stars in the MW disk. Using high-resolution numerical simulations we estimate that the new space telescope Gaia should detect the kinematic signatures of a few starless substructures provided the CDM paradigm holds. Such a measurement will provide unprecedented constraints on the primordial matter power spectrum at low-mass scales and offer a new handle onto the particle physics properties of dark matter.
We introduce an extension of the ELVIS project to account for the effects of the Milky Way galaxy on its subhalo population. Our simulation suite, Phat ELVIS, consists of twelve high-resolution cosmological dark matter-only (DMO) zoom simulations of Milky Way-size $Lambda$CDM~ haloes ($M_{rm v} = 0.7-2 times 10^{12} ,mathrm{M}_odot$) along with twelve re-runs with embedded galaxy potentials grown to match the observed Milky Way disk and bulge today. The central galaxy potential destroys subhalos on orbits with small pericenters in every halo, regardless of the ratio of galaxy mass to halo mass. This has several important implications. 1) Most of the $mathtt{Disk}$ runs have no subhaloes larger than $V_{rm max} = 4.5$ km s$^{-1}$ within $20$ kpc and a significant lack of substructure going back $sim 8$ Gyr, suggesting that local stream-heating signals from dark substructure will be rare. 2) The pericenter distributions of Milky Way satellites derived from $mathit{Gaia}$ data are remarkably similar to the pericenter distributions of subhaloes in the $mathtt{Disk}$ runs, while the DMO runs drastically over-predict galaxies with pericenters smaller than 20 kpc. 3) The enhanced destruction produces a tension opposite to that of the classic `missing satellites problem: in order to account for ultra-faint galaxies known within $30$ kpc of the Galaxy, we must populate haloes with $V_mathrm{peak} simeq 7$ km s$^{-1}$ ($M simeq 3 times 10^{7} ,mathrm{M}_odot$ at infall), well below the atomic cooling limit of $V_mathrm{peak} simeq 16$ km s$^{-1}$ ($M simeq 5 times 10^{8} ,mathrm{M}_odot$ at infall). 4) If such tiny haloes do host ultra-faint dwarfs, this implies the existence of $sim 1000$ satellite galaxies within 300 kpc of the Milky Way.
We present a comprehensive search for the 3.5 keV line, using $sim$51 Ms of archival Chandra observations peering through the Milky Ways Dark Matter Halo from across the entirety of the sky, gathered via the Chandra Source Catalog Release 2.0. We con sider the datas radial distribution, organizing observations into four data subsets based on angular distance from the Galactic Center. All data is modeled using both background-subtracted and background-modeled approaches to account for the particle instrument background, demonstrating statistical limitations of the currently-available $sim$1 Ms of particle background data. A non-detection is reported in the total data set, allowing us to set an upper-limit on 3.5 keV line flux and constrain the sterile neutrino dark matter mixing angle. The upper-limit on sin$^2$(2$theta$) is $2.58 times 10^{-11}$ (though systematic uncertainty may increase this by a factor of $sim$2), corresponding to the upper-limit on 3.5 keV line flux of $2.34 times 10^{-7}$ ph s$^{-1}$ cm$^{-2}$. These limits show consistency with recent constraints and several prior detections. Non-detections are reported in all radial data subsets, allowing us to constrain the spatial profile of 3.5 keV line intensity, which does not conclusively differ from Navarro-Frenk-White predictions. Thus, while offering heavy constraints, we do not entirely rule out the sterile neutrino dark matter scenario or the more general decaying dark matter hypothesis for the 3.5 keV line. We have also used the non-detection of any unidentified emission lines across our continuum to further constrain the sterile neutrino parameter space.
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes hard to understand their physical content, especially when derivative mixing is present, as it is the case for Horndeski action. In this work we develop a method that allows to write a Ricci curvature-free scalar field equation and discuss some of the advantages of such rephrasing in the study of stability issues in the presence of matter, the existence of an Einstein frame and the generalization of the disformal screening mechanism. For quartic Horndeski theories, such procedure leaves, in general, a residual coupling to curvature, given by the Weyl tensor. This gives rise to a binary classification of scalar-tensor theories into stirred theories, for which the curvature can be substituted for, and shaken theories for which a residual coupling to curvature remains. Quite remarkably, we have found that generalized DBI Galileons belong to the first class. Finally, we discuss kinetic mixing in quintic theories for which non-linear mixing terms appears and in the recently proposed theories beyond Horndeski which display a novel form of kinetic mixing, in which the field equation is sourced by derivatives of the energy-momentum tensor.
220 - O. Pfuhl , T. K. Fritz , M. Zilka 2011
We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1,pc from Sgr,A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic Center so far, probing the number of B9/A0 main sequence stars ($2.2-2.8,M_odot$) in two deep fields. From spectro-photometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find that (1) the average nuclear star-formation rate dropped from an initial maximum $sim10$,Gyrs ago to a deep minimum 1-2,Gyrs ago and increased again during the last few hundred Myrs, and (2) that roughly 80% of the stellar mass formed more than 5,Gyrs ago; (3) mass estimates within $rm Rsim1,pc$ from Sgr,A* favor a dominant star formation mode with a normal Chabrier/Kroupa initial mass function for the majority of the past star formation in the Galactic Center. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence was much smaller than today.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا