ترغب بنشر مسار تعليمي؟ اضغط هنا

Feature Map Transform Coding for Energy-Efficient CNN Inference

186   0   0.0 ( 0 )
 نشر من قبل Evgenii Zheltonozhskii
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks (CNNs) achieve state-of-the-art accuracy in a variety of tasks in computer vision and beyond. One of the major obstacles hindering the ubiquitous use of CNNs for inference on low-power edge devices is their high computational complexity and memory bandwidth requirements. The latter often dominates the energy footprint on modern hardware. In this paper, we introduce a lossy transform coding approach, inspired by image and video compression, designed to reduce the memory bandwidth due to the storage of intermediate activation calculation results. Our method does not require fine-tuning the network weights and halves the data transfer volumes to the main memory by compressing feature maps, which are highly correlated, with variable length coding. Our method outperform previous approach in term of the number of bits per value with minor accuracy degradation on ResNet-34 and MobileNetV2. We analyze the performance of our approach on a variety of CNN architectures and demonstrate that FPGA implementation of ResNet-18 with our approach results in a reduction of around 40% in the memory energy footprint, compared to quantized network, with negligible impact on accuracy. When allowing accuracy degradation of up to 2%, the reduction of 60% is achieved. A reference implementation is available at https://github.com/CompressTeam/TransformCodingInference

قيم البحث

اقرأ أيضاً

108 - Yubo Shi , Meiqi Wang , Siyi Chen 2021
To achieve higher accuracy in machine learning tasks, very deep convolutional neural networks (CNNs) are designed recently. However, the large memory access of deep CNNs will lead to high power consumption. A variety of hardware-friendly compression methods have been proposed to reduce the data transfer bandwidth by exploiting the sparsity of feature maps. Most of them focus on designing a specialized encoding format to increase the compression ratio. Differently, we observe and exploit the sparsity distinction between activations in earlier and later layers to improve the compression ratio. We propose a novel hardware-friendly transform-based method named 1D-Discrete Cosine Transform on Channel dimension with Masks (DCT-CM), which intelligently combines DCT, masks, and a coding format to compress activations. The proposed algorithm achieves an average compression ratio of 2.9x (53% higher than the state-of-the-art transform-based feature map compression works) during inference on ResNet-50 with an 8-bit quantization scheme.
We present a novel framework to learn to convert the perpixel photometric information at each view into spatially distinctive and view-invariant low-level features, which can be plugged into existing multi-view stereo pipeline for enhanced 3D reconst ruction. Both the illumination conditions during acquisition and the subsequent per-pixel feature transform can be jointly optimized in a differentiable fashion. Our framework automatically adapts to and makes efficient use of the geometric information available in different forms of input data. High-quality 3D reconstructions of a variety of challenging objects are demonstrated on the data captured with an illumination multiplexing device, as well as a point light. Our results compare favorably with state-of-the-art techniques.
Dynamic inference is a feasible way to reduce the computational cost of convolutional neural network(CNN), which can dynamically adjust the computation for each input sample. One of the ways to achieve dynamic inference is to use multi-stage neural n etwork, which contains a sub-network with prediction layer at each stage. The inference of a input sample can exit from early stage if the prediction of the stage is confident enough. However, design a multi-stage CNN architecture is a non-trivial task. In this paper, we introduce a general framework, ENAS4D, which can efficiently search for optimal multi-stage CNN architecture for dynamic inference in a well-designed search space. Firstly, we propose a method to construct the search space with multi-stage convolution. The search space include different numbers of layers, different kernel sizes and different numbers of channels for each stage and the resolution of input samples. Then, we train a once-for-all network that supports to sample diverse multi-stage CNN architecture. A specialized multi-stage network can be obtained from the once-for-all network without additional training. Finally, we devise a method to efficiently search for the optimal multi-stage network that trades the accuracy off the computational cost taking the advantage of once-for-all network. The experiments on the ImageNet classification task demonstrate that the multi-stage CNNs searched by ENAS4D consistently outperform the state-of-the-art method for dyanmic inference. In particular, the network achieves 74.4% ImageNet top-1 accuracy under 185M average MACs.
In this paper, we compress convolutional neural network (CNN) weights post-training via transform quantization. Previous CNN quantization techniques tend to ignore the joint statistics of weights and activations, producing sub-optimal CNN performance at a given quantization bit-rate, or consider their joint statistics during training only and do not facilitate efficient compression of already trained CNN models. We optimally transform (decorrelate) and quantize the weights post-training using a rate-distortion framework to improve compression at any given quantization bit-rate. Transform quantization unifies quantization and dimensionality reduction (decorrelation) techniques in a single framework to facilitate low bit-rate compression of CNNs and efficient inference in the transform domain. We first introduce a theory of rate and distortion for CNN quantization, and pose optimum quantization as a rate-distortion optimization problem. We then show that this problem can be solved using optimal bit-depth allocation following decorrelation by the optimal End-to-end Learned Transform (ELT) we derive in this paper. Experiments demonstrate that transform quantization advances the state of the art in CNN compression in both retrained and non-retrained quantization scenarios. In particular, we find that transform quantization with retraining is able to compress CNN models such as AlexNet, ResNet and DenseNet to very low bit-rates (1-2 bits).
95 - Lin Song , Yanwei Li , Zeming Li 2019
Learning discriminative global features plays a vital role in semantic segmentation. And most of the existing methods adopt stacks of local convolutions or non-local blocks to capture long-range context. However, due to the absence of spatial structu re preservation, these operators ignore the object details when enlarging receptive fields. In this paper, we propose the learnable tree filter to form a generic tree filtering module that leverages the structural property of minimal spanning tree to model long-range dependencies while preserving the details. Furthermore, we propose a highly efficient linear-time algorithm to reduce resource consumption. Thus, the designed modules can be plugged into existing deep neural networks conveniently. To this end, tree filtering modules are embedded to formulate a unified framework for semantic segmentation. We conduct extensive ablation studies to elaborate on the effectiveness and efficiency of the proposed method. Specifically, it attains better performance with much less overhead compared with the classic PSP block and Non-local operation under the same backbone. Our approach is proved to achieve consistent improvements on several benchmarks without bells-and-whistles. Code and models are available at https://github.com/StevenGrove/TreeFilter-Torch.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا