ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the dust properties in the molecular clouds of the Large Magellanic Cloud

79   0   0.0 ( 0 )
 نشر من قبل Deborah Paradis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) and with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.



قيم البحث

اقرأ أيضاً

We present a high-sensitivity ($1sigma<1.6~mathrm{mJy~beam^{-1}}$) continuum observation in a 343 arcmin$^2$ area of the northeast region in the Small Magellanic Cloud at a wavelength of 1.1 mm, conducted using the AzTEC instrument on the ASTE telesc ope. In the observed region, we identified 20 objects by contouring $10sigma$ emission. Through spectral energy distribution (SED) analysis using 1.1 mm, $Herschel$, and $Spitzer$ data, we estimated the gas masses of $5times 10^3-7times 10^4~mathrm{M_odot}$, assuming a gas-to-dust ratio of 1000. Dust temperature and the index of emissivity were also estimated as $18-33$ K and $0.9-1.9$, respectively, which are consistent with previous low resolution studies. The relation between dust temperature and the index of emissivity shows a weak negative linear correlation. We also investigated five CO-detected dust-selected clouds in detail. The total gas masses were comparable to those estimated from the Mopra CO data, indicating that the assumed gas-to-dust ratio of 1000 and the $X_mathrm{CO}$ factor of $1times10^{21}~mathrm{cm^{-2}~(K~km~s^{-1})^{-1}}$, with uncertainties of a factor of 2, are reliable for the estimation of the gas masses of molecular or dust-selected clouds. Dust column density showed good spatial correlation with CO emission, except for an object that associates with bright young stellar objects. The $8~mathrm{mu m}$ filamentary and clumpy structures also showed similar spatial distribution with the CO emission and dust column density, supporting the fact that polycyclic aromatic hydrocarbon emissions arise from the surfaces of dense gas and dust clouds.
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamenta l species such as CS, SO, CCH, HCN, HCO+, and HNC are detected in addition to those of CO and 13CO, while CH3OH is not detected in any source and N2H+ is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the 7 sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic to the LMC without influences of star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH3OH. The feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas the features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO+ and SO/HCO+ ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along molecular cloud formation.
142 - H. Sano , Y. Yamane , K. Tokuda 2018
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new $^{12}$CO($J$ = 3-2) and $^{12}$CO($J$ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at $V_ mathrm{LSR}$ $sim$245 km s$^{-1}$ towards the southeast of the SNR using ASTE $^{12}$CO($J$ = 3-2) data at an angular resolution of $sim$25$$ ($sim$6 pc in the LMC). Using the ALMA $^{12}$CO($J$ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of $sim$1.8$$ ($sim$0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of $sim5$ km s$^{-1}$. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.
122 - Tony Wong , Annie Hughes (2 , 3 2011
We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. We identify clouds as regions of connected CO emission, and find that the distributions of cloud sizes, fluxes and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL propto L^{-2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a clouds kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density reg ions in $^{13}$CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the Planck cold cloud or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (leaves) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا