ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dust-Selected Molecular Clouds in the Northeast Region of the Small Magellanic Cloud

71   0   0.0 ( 0 )
 نشر من قبل Tatsuya Takekoshi Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a high-sensitivity ($1sigma<1.6~mathrm{mJy~beam^{-1}}$) continuum observation in a 343 arcmin$^2$ area of the northeast region in the Small Magellanic Cloud at a wavelength of 1.1 mm, conducted using the AzTEC instrument on the ASTE telescope. In the observed region, we identified 20 objects by contouring $10sigma$ emission. Through spectral energy distribution (SED) analysis using 1.1 mm, $Herschel$, and $Spitzer$ data, we estimated the gas masses of $5times 10^3-7times 10^4~mathrm{M_odot}$, assuming a gas-to-dust ratio of 1000. Dust temperature and the index of emissivity were also estimated as $18-33$ K and $0.9-1.9$, respectively, which are consistent with previous low resolution studies. The relation between dust temperature and the index of emissivity shows a weak negative linear correlation. We also investigated five CO-detected dust-selected clouds in detail. The total gas masses were comparable to those estimated from the Mopra CO data, indicating that the assumed gas-to-dust ratio of 1000 and the $X_mathrm{CO}$ factor of $1times10^{21}~mathrm{cm^{-2}~(K~km~s^{-1})^{-1}}$, with uncertainties of a factor of 2, are reliable for the estimation of the gas masses of molecular or dust-selected clouds. Dust column density showed good spatial correlation with CO emission, except for an object that associates with bright young stellar objects. The $8~mathrm{mu m}$ filamentary and clumpy structures also showed similar spatial distribution with the CO emission and dust column density, supporting the fact that polycyclic aromatic hydrocarbon emissions arise from the surfaces of dense gas and dust clouds.



قيم البحث

اقرأ أيضاً

78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) a nd with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10-m telescope. This survey covered 4.5 deg$^2$ of the SMC with $1sigma$ noise levels of $5-12$ mJy beam$^{-1}$, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with $Herschel$ 160 $mathrm{mu m}$, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered $Herschel$ data (100, 160, 250, 350, and 500 $mathrm{mu m}$). The 1.1 mm objects show dust temperatures of $17-45$ K and gas masses of $4times10^3-3times10^5~M_odot$, assuming single-temperature thermal emission from the cold dust with an emissivity index, $beta$, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the $Spitzer$ 24 $mathrm{mu m}$ and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 $mathrm{mu m}$ flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.
We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths < 1 km/s). Most CO emission appears to be offset from the peaks of the HI emission, some molecular gas lies in regions without a clear HI counterpart. We estimate a total molecular gas mass of 10^3-10^4 Msun in each cloud and molecular gas fractions up to 30% of the total cold gas mass (molecular + neutral). Under the assumption that this gas is escaping the galaxy, we calculated a cold gas outflow rate of 0.3-1.8 Msun/yr and mass loading factors of 3 -12 at a distance larger than 1 kpc. These results show that relatively weak star-formation-driven winds in dwarf galaxies like the SMC are able to accelerate significant amounts of cold and dense matter and inject it into the surrounding environment.
In order to understand the evolution of the interstellar medium (ISM) of a galaxy, we have analysed the gas and dust budget of the Small Magellanic Cloud (SMC). Using the Spitzer Space Telescope, we measured the integrated gas mass-loss rate across a symptotic giant branch (AGB) stars and red supergiants (RSGs) in the SMC, and obtained a rate of 1.4x10^-3 Msun yr-1. This is much smaller than the estimated gas ejection rate from type II supernovae (SNe) (2-4x10^-2 Msun yr-1). The SMC underwent a an increase in starformation rate in the last 12 Myrs, and consequently the galaxy has a relatively high SN rate at present. Thus, SNe are more important gas sources than AGB stars in the SMC. The total gas input from stellar sources into the ISM is 2-4x10^-2 Msun yr-1. This is slightly smaller than the ISM gas consumed by starformation (~8x10^-2 Msun yr-1). Starformation in the SMC relies on a gas reservoir in the ISM, but eventually the starformation rate will decline in this galaxy, unless gas infalls into the ISM from an external source. The dust injection rate from AGB and RSG candidates is 1x10^-5 Msun yr-1. Dust injection from SNe is in the range of 0.2--11x10^-4 Msun yr-1, although the SN contribution is rather uncertain. Stellar sources could be important for ISM dust (3x10^5 Msun yr-1) in the SMC, if the dust lifetime is about 1.4 Gyrs. We found that the presence of poly-aromatic hydrocarbons (PAHs) in the ISM cannot be explained entirely by carbon-rich AGB stars. Carbon-rich AGB stars could inject only 7x10^-9 Msun yr-1 of PAHs at most, which could contribute up to 100 Msun of PAHs in the lifetime of a PAH. The estimated PAH mass of 1800 Msun in the SMC can not be explained. Additional PAH sources, or ISM reprocessing should be needed.
We examine the three-dimensional structure and dust extinction properties in a ~ 200 pc $times$ 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). We model a deep Hubble Space Telescope optical color-magnitude diagram (CMD) of re d clump and red giant branch stars to infer the dust extinction and galactic structure. We model the distance distribution of the stellar component with a Gaussian and find a centroid distance of 65.2 kpc (distance modulus $mu$ = 19.07 mag) with a FWHM $approx$ 11.3 kpc. This large extent along the line of sight reproduces results from previous studies using variable stars and red clump stars. Additionally, we find an offset between the stellar and dust distributions, with the dust on the near side relative to the stars by 3.22 $^{+1.69}_{-1.44}$ kpc, resulting in a 73% reddened fraction of stars. Modeling the dust layer with a log-normal $A_V$ distribution indicates a mean extinction $langle A_V rangle$ = 0.41 $pm$ 0.09 mag. We also calculate $A_V/N_H$ = 3.2 - 4.2 $times10^{-23}$ mag cm$^2$ H$^{-1}$ which is significantly lower than the Milky Way value but is comparable to previous SMC dust-to-gas ratio measurements. Our results yield the first joint dust extinction and 3D geometry properties in a key region in the SMC. This study demonstrates that CMD modeling can be a powerful tool to simultaneously constrain dust extinction and geometry properties in nearby galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا