ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of 0.18{mu}m CMOS Ring Oscillator at Liquid Helium Temperature

68   0   0.0 ( 0 )
 نشر من قبل Guo-Ping Guo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents low power dissipation, low phase noise ring oscillators (ROs) based on Semiconductor Manufacturing International Corporation (SMIC) 0.18{mu}m CMOS technology at liquid helium temperature (LHT). First, the characterization and modelling of CMOS at LHT are presented. The temperature-dependent device parameters are revised and the model then shows good agreement with the measurement results. The ring oscillator is then designed with energy efficiency optimization by application of forward body biasing (FBB). FBB is proposed to compensate for the threshold voltage (VTH) shift to preserve the benefits of the enhancement of the carrier mobility at 4.2K. The delay per stage ({tau}p), the static current (ISTAT), the dynamic current (IDYN), the power dissipation (P) and the phase noise (L(foff)) are analyzed at both 298 K and 4.2 K, with and without FBB. The performance of the designed RO in terms of speed ({tau}p=179ps), static current (23.55nA/stage), power dissipation (2.13{mu}W) and phase noise (-177.57dBc/Hz@1MHz) can be achieved at 4.2K with the supply voltage (VDD) reduced to 0.9V.



قيم البحث

اقرأ أيضاً

136 - Tengteng Lu , Zhen Li , Chao Luo 2018
Previous cryogenic electronics studies are most above 4.2K. In this paper we present the cryogenic characterization of a 0.18{mu}m standard bulk CMOS technology(1.8V and 5V) at sub-kelvin temperature around 270mK. PMOS and NMOS devices with different width to length ratios(W/L) are tested and characterized under various bias conditions at temperatures from 300K to 270mK. It is shown that the 0.18{mu}m standard bulk CMOS technology is still working at sub-kelvin temperature. The kink effect and current overshoot phenomenon are observed at sub-kelvin temperature. Especially, current overshoot phenomenon in PMOS devices at sub-kelvin temperature is shown for the first time. The transfer characteristics of large and thin-oxide devices at sub-kelvin temperature are modeled using the simplified EKV model. This work facilitates the CMOS circuits design and the integration of CMOS circuits with silicon-based quantum chips at extremely low temperatures.
95 - Zhen Li , Chao Luo , Tengteng Lu 2018
Cryogenic characterization and modeling of 0.18um CMOS technology (1.8V and 5V) are presented in this paper. Several PMOS and NMOS transistors with different width to length ratios(W/L) were extensively characterized under various bias conditions at temperatures ranging from 300K down to 4.2K. We extracted their fundamental physical parameters and developed a compact model based on BSIM3V3. In addition to their I-V characteristics, threshold voltage(Vth) values, on/off current ratio, transconductance of the MOS transistors, and resistors on chips are measured at temperatures from 300K down to 4.2K. A simple subcircuit was built to correct the kink effect. This work provides experimental evidence for implementation of cryogenic CMOS technology, a valid industrial tape-out process model, and romotes the application of integrated circuits in cryogenic environments, including quantum measurement and control systems for quantum chips at very low temperatures.
102 - P. A. t Hart 2021
This work presents a self-heating study of a 40-nm bulk-CMOS technology in the ambient temperature range from 300 K down to 4.2 K. A custom test chip was designed and fabricated for measuring both the temperature rise in the MOSFET channel and in the surrounding silicon substrate, using the gate resistance and silicon diodes as sensors, respectively. Since self-heating depends on factors such as device geometry and power density, the test structure characterized in this work was specifically designed to resemble actual devices used in cryogenic qubit control ICs. Severe self-heating was observed at deep-cryogenic ambient temperatures, resulting in a channel temperature rise exceeding 50 K and having an impact detectable at a distance of up to 30 um from the device. By extracting the thermal resistance from measured data at different temperatures, it was shown that a simple model is able to accurately predict channel temperatures over the full ambient temperature range from deep-cryogenic to room temperature. The results and modeling presented in this work contribute towards the full self-heating-aware IC design-flow required for the reliable design and operation of cryo-CMOS circuits.
X-ray polarimetry in astronomy has not been exploited well, despite its importance. The recent innovation of instruments is changing this situation. We focus on a complementary MOS (CMOS) pixel detector with small pixel size and employ it as an x-ray photoelectron tracking polarimeter. The CMOS detector we employ is developed by GPixel Inc., and has a pixel size of 2.5 $mathrm{mu}$m $times$ 2.5 $mathrm{mu}$m. Although it is designed for visible light, we succeed in detecting x-ray photons with an energy resolution of 176 eV (FWHM) at 5.9 keV at room temperature and the atmospheric condition. We measure the x-ray detection efficiency and polarimetry sensitivity by irradiating polarized monochromatic x-rays at BL20B2 in SPring-8, the synchrotron radiation facility in Japan. We obtain modulation factors of 7.63% $pm$ 0.07% and 15.5% $pm$ 0.4% at 12.4 keV and 24.8 keV, respectively. It demonstrates that this sensor can be used as an x-ray imaging spectrometer and polarimeter with the highest spatial resolution ever tested.
The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes (CNMs) and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores growth behavior, allows inferring on the profile of the helium ion beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا